python中numpy数组排序_python-如何对数组中的numpy数组进行排序?

这个问题与this one密切相关.可以说可以使用np.lexsort或在np.recarray上排序来解决它,但不能以琐碎和Python的方式解决.

我有一个numpy数组,例如这个数组:

array([[[ 2, 7, 1],

[ 35, 9, 1],

[ 22, 12, 4]],

[[ 12, 2, 3],

[ 3, 7, 8],

[ 12, 1, 10]]])

我想把那个作为输出:

array([[[ 2, 7, 1],

[ 22, 12, 4],

[ 35, 9, 1]],

[[ 3, 7, 8],

[ 12, 1, 10],

[ 12, 2, 3]]])

也就是说,根据每个内部数组的第一,第二和第三值对它们进行排序.请注意,我不想按列排序(没有类似表格的排序方式).这是不需要的:

array([[[ 2, 7, 1],

[ 22, 9, 1],

[ 35, 12, 4]],

[[ 3, 1, 3],

[ 12, 2, 8],

[ 12, 7, 10]]])

换句话说,我想要的是np.sort_complex,但对于高维复杂类类型.

对我来说,更明智的方法是从我的3D数组创建np.recarray.问题是我不知道如何廉价地做到这一点.您将如何快速转换此处显示的数组之一:

array([[( 2, 7, 1),

( 35, 9, 1),

( 22, 12, 4)],

[( 12, 2, 3),

( 3, 7, 8),

( 12, 1, 10)]], dtype=???)

具有正确的dtype([[(“ c1”,“ f8”),(“ c2”,“ f8”),(“ c3”,“ f8”)]-),但考虑到较高的尺寸)?

np.lexarray在高维数组中的行为非常奇怪,我无法使其正常工作.

np.argsort也不是答案,因为它不能以稳定的方式排序(没有“ draw”总是第一个,第二个和第三个).

我想出了一个纯Python的“解决方案”,它很慢,还有其他想法吗?

解决方法:

有很多事情可能会出错,以后会更多,但是在您的情况下,您可以按照非常简单的方式对数组进行排序:

>>> a = np.array([[[ 2, 7, 1],

... [ 35, 9, 1],

... [ 22, 12, 4]],

...

... [[ 12, 2, 3],

... [ 3, 7, 8],

... [ 12, 1, 10]]])

>>> a_view = a.view(dtype=[('', a.dtype)]*a.shape[-1])

>>> a_view.sort(axis=1)

>>> a

array([[[ 2, 7, 1],

[22, 12, 4],

[35, 9, 1]],

[[ 3, 7, 8],

[12, 1, 10],

[12, 2, 3]]])

为此,要用于解析绘制的轴必须是最后一个数组,并且该数组必须是连续的.因此,不管a的历史如何,都要正确地做到这一点,执行a = np.ascontiguousarray(a)可能是安全的事情.

标签:arrays,python,sorting,numpy

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值