js 根据公历日期 算出农历_阴历、阳历、农历到底有什么区别?终于弄明白了!...

本文介绍了历法的基本概念,包括阴历、阳历的区别及其在日常生活中的应用。详细解释了农历作为阴阳历的特点,如置闰法及二十四节气的设置等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

23f8534ac1b8bb262307ebd61d94f77b.png

每当我们身边有朋友过生日时,许多人都会问一句:“这是阳历生日还是阴历的?”除了这两种对日期的说法,我们还常听到一种叫做“农历”的日期,那么这三种说法到底有什么区别?“农历”和“阴历”是一样的吗?

历法的诞生

我们都知道,一年有春夏秋冬4个季节,12个月、365天,那古代人民是怎么记录这些日期和季节的变化的呢?

这可难不倒聪明的古人:他们根据太阳升起、落下,或者月亮阴晴圆缺的变化规律,总结出了一套记录日期和季节变化的法则,也就是我们所说的历法

1cf0896db61445ae87741a75e3b6cd0f.png

△墨西哥博物馆的阿兹特克历法石。阿兹特克人的历法中,一年也是365天。

历法的种类

全世界各种历法的来源,都逃不出阴历或者阳历的范畴。那么阴历和阳历又到底是什么?又有什么区别呢?

首先,我们得知道月亮是绕着地球转圈的,而地球又是绕着太阳转圈的。阳历的“阳”,指的是太阳,阳历的一年就是地球围着太阳绕一圈的时间。

d8256bd2dd217c803685895dc557c4e7.png
相对地,阴历的“阴”,指的是月亮,而月亮绕地球运行一周所花费的时间就是阴历的一个月。

6dd566f416d4cd01dd30aac4983f1ff6.png
阴历和阳历,是古代人记录日期和季节变化的两种基本方式。各个国家历史上的历法都是阴历或者阳历。

阴历、阳历、农历

现在我们日常生活中使用的公历就是一种阳历。而我们所说的农历却比较特殊,因为农历并不是单纯的阴历,也不是阳历,而是结合阳历和阴历而演变而成的“阴阳历”。

ce83b83530de656845acbb5e58f3b5d9.png

△日历上的阿拉伯数字就是阳历日期,下面的汉字日期就是阴历日期。

很多人认为农历就是阴历,其实二者还是有差别的。阴历的时间和阳历相比,每年大约差十一天。如果完全按照阴历来,可能不出五年,我们就要在夏天过春节了。

然而这种情况并没有发生,因为中国的农历中有一项伟大的发明叫“置闰法”。每19年中设置7个闰月,有闰月的年份一年383天或384天,称为闰年。比如2016年、2020年都是闰年。

此外,农历又根据太阳的位置,把一年分为二十四个节气,便于安排农业生产。所以二十四节气来自阳历,而非阴历。这其中也包括了清明这一春季的节气。

5857691260cf47c2a6b257fec75bbddf.png

而二十四节气之一的清明也是我国的一个重要传统节日。但是,中国的其他传统节日都是根据阴历设置的,只有清明是根据阳历来设置的。

所以说,中国传统的历法是结合了阳历和阴历的一种阴阳历。它用置闰法填补了阴、阳历的时间差,又用阳历的规律制定了安排农事的二十四节气。在农历的时序中,人们的生活更加和谐一致,春耕秋收也得到了有条不紊的规划。

而在下周末的研学课中,孩子们即将一起去体验最原汁原味的春分活动,学习二十四节气中的文化、历史、风俗以及里面的科学知识。而且,我们还将穿着汉服,过一个最有仪式感、最有态度的二十四节气。

遗传算法优化BP神经网络(GABP)是一种结合了遗传算法(GA)和BP神经网络的优化预测方法。BP神经网络是一种多层前馈神经网络,常用于模式识别和预测问题,但其容易陷入局部最优。而遗传算法是一种模拟自然选择和遗传机制的全局优化方法,能够有效避免局部最优 。GABP算法通过遗传算法优化BP神经网络的权重和阈值,从而提高网络的学习效率和预测精度 。 种群:遗传算法中个体的集合,每个个体代表一种可能的解决方案。 编码:将解决方案转化为适合遗传操作的形式,如二进制编码。 适应度函数:用于评估个体解的质量,通常与目标函数相反,目标函数值越小,适应度越高。 选择:根据适应度保留优秀个体,常见方法有轮盘赌选择、锦标赛选择等。 交叉:两个父代个体交换部分基因生成子代。 变异:随机改变个体的部分基因,增加种群多样。 终止条件:当迭代次数或适应度阈值达到预设值时停止算法 。 初始化种群:随机生成一组神经网络参数(权重和阈值)作为初始种群 。 计算适应度:使用神经网络模型进行训练和预测,根据预测误差计算适应度 。 选择操作:根据适应度选择优秀个体 。 交叉操作:对选择的个体进行交叉,生成新的子代个体 。 变异操作:对子代进行随机变异 。 替换操作:用新生成的子代替换掉一部分旧种群 。 重复步骤2-6,直到满足终止条件 。 适应度函数通常以预测误差为基础,误差越小,适应度越高。常用的误差指标包括均方根误差(RMSE)或平均绝对误差(MAE)等 。 GABP代码中包含了适应度函数的定义、种群的生成、选择、交叉、变异以及训练过程。代码注释详尽,便于理解每个步骤的作用 。 GABP算法适用于多种领域,如时间序列预测、经济预测、工程问题的优化等。它特别适合解决多峰优化问题,能够有效提高预测的准确和稳定
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值