2进制要专门学习吗?_2的n次方能包含所有十进制序列吗?

ab733ad40f9ab9773a6dc23968c44131.png

答案是:能!

严格的表述是这样的:

定理

equation?tex=1
:对于由
equation?tex=0%5Csim9 组成的任意有限序列
equation?tex=%5Comega ,存在自然数
equation?tex=n 使得
equation?tex=2%5En 的十进制表示包含序列
equation?tex=%5Comega

比如

equation?tex=%5Comega =“
equation?tex=31415 ”,取
equation?tex=n%3D144 ,此时:

equation?tex=2%5E%7B144%7D%3D2230074519853062%5Ccolor%7Bred%7D%7B31415%7D35718272648361505980416%5C%5C

直接看定理

equation?tex=1 ,感觉证明起来必定很难,涉及到
equation?tex=2 的幂的各个十进制位数,然而这不过是个小把戏,实际上定理
equation?tex=1 只是一个更强的定理的一个推论,直接证明这个更强的定理,会简单很多。

定理

equation?tex=2 :在十进制表示下,对任意的正整数
equation?tex=N ,存在自然数
equation?tex=n 使得
equation?tex=2%5En
equation?tex=N 的各位数开头。

比如

equation?tex=N%3D314 ,取
equation?tex=n%3D872 ,有
equation?tex=2%5E%7B872%7D%5Capprox3.14888%5Ctimes10%5E%7B262%7D
equation?tex=314 开头。

如果序列

equation?tex=%5Comega 不是以
equation?tex=0 开头,那么可以把它看成是一个十进制正整数,应用定理
equation?tex=2 即得定理
equation?tex=1 成立;如果
equation?tex=%5Comega
equation?tex=0 开头,则不能简单看作十进制正整数,不过可以在
equation?tex=%5Comega 开头添加
equation?tex=1 ,再使用定理
equation?tex=2 就可以证明定理
equation?tex=1 了。所以接下来要做的是证明定理
equation?tex=2 。(文末提供了一种以微积分为基础的简便证明方法,有兴趣的读者可以阅读)。

如果定理

equation?tex=2 确实成立,那么肯定存在自然数
equation?tex=k 使得:
equation?tex=N%5Ctimes10%5Ek%5Cleq2%5En%3C%28N%2B1%29%5Ctimes10%5Ek%5Ctag%7B1%7D%5C%5C 也就是说,这不单是要寻找合适的
equation?tex=n ,还要寻找合适的
equation?tex=k 。不过,利用一些技巧可以避开这个
equation?tex=k 的阻挠。注意到
equation?tex=%281%29 式是幂的形式,但是如果取一下对数呢?取对数是降级运算,可以将乘除变换为加减,问题就简单很多了。不过在取对数之前,先将
equation?tex=N 表示成科学计数法的形式,例如
equation?tex=N%3D314%3D3.14%5Ctimes10%5E2 。我们设
equation?tex=N%3Dm%5Ctimes10%5El ,其中
equation?tex=1%5Cleq+m%3C10 。这个时候
equation?tex=%281%29 式就成了:
equation?tex=m%5Ctimes10%5E%7Bk%2Bl%7D%5Cleq2%5En%3C%28m%2B10%5E%7B-l%7D%29%5Ctimes10%5E%7Bk%2Bl%7D%5C%5C 在不等式上取以
equation?tex=10 为底的对数可得:
equation?tex=%5Clg+m%2Bk%2Bl%5Cleq+n%5Clg2%3C%5Clg%28m%2B10%5E%7B-l%7D%29%2Bk%2Bl%5Ctag2%5C%5C

到了这里,还是出现

equation?tex=k 啊,怎么就“避开这个
equation?tex=k 的阻挠”了呢?别急,我们还差一步。如果我们在这个式子里边忽视掉整数部分:因为
equation?tex=1%5Cleq+m%3C10 ,那么
equation?tex=0%5Cleq%5Clg+m%3C1 ,也有
equation?tex=0%3C%5Clg%28m%2B10%5E%7B-l%7D%29%5Cleq1 ,并且
equation?tex=%5Clg%28m%2B10%5E%7B-l%7D%29-%5Clg+m%3D%5Clg%281%2B%5Cfrac1N%29%5Capprox%5Cfrac1%7BN%5Cln10%7D 是个很小的数,也就是
equation?tex=%5Clg+m
equation?tex=%5Clg%28m%2B10%5E%7B-l%7D%29 相差很少,且它们都不大于
equation?tex=1 。如果我们只取
equation?tex=%282%29 式的小数部分,由于
equation?tex=%5Clg+m
equation?tex=%5Clg%28m%2B10%5E%7B-l%7D%29 相差的值很小,且都不大于
equation?tex=1 ,那么取了小数部分之后不等式还是成立的——只有一种特殊情况:当
equation?tex=%5Clg%28m%2B10%5E%7B-l%7D%29%3D1 时,这个时候取小数部分的话就变成
equation?tex=0 了,就会小于
equation?tex=%5Clg+m 了,这个情况下我们仍保留
equation?tex=%5Clg%28m%2B10%5E%7B-l%7D%29 这部分,就可以保证不等式成立。

定义

equation?tex=dec%28a%29 为取
equation?tex=a 的小数部分
,比如
equation?tex=dec%281.23%29%3D0.23
equation?tex=dec%282%29%3D0 ,取
equation?tex=%282%29 式各项的小数部分可得:
equation?tex=%5Clg+m%5Cleq+dec%28n%5Clg2%29%3C%5Clg%28m%2B10%5E%7B-l%7D%29%5Ctag3%5C%5C

这时候终于摆脱

equation?tex=k 了。现在我们也不用考虑
equation?tex=n%5Clg2 的整数部分,对每一个自然数
equation?tex=n
equation?tex=n%5Clg2 都产生一个小数部分,也就相当于在区间
equation?tex=%5B0%2C1%29 上画一点。这么多个
equation?tex=n ,肯定有某些点会出现在区间
equation?tex=%5B%5Clg+m%2C%5Clg%28m%2B10%5E%7B-l%7D%29%29 上吧?只要有某些点出现在这个区间上,
equation?tex=%283%29 的解就找到了。

下面的步骤就是一些技巧了。

取正整数

equation?tex=M%3E%5Cfrac+1%7B%5Clg%28m%2B10%5E%7B-l%7D%29-%5Clg+m%7D ,也就是
equation?tex=%5Cfrac+1M%3C%5Clg%28m%2B10%5E%7B-l%7D%29-%5Clg+m ,将区间
equation?tex=%5B0%2C1%29
等分成
equation?tex=M 个小区间
,每个的长度都是
equation?tex=%5Cfrac+1M 。让
equation?tex=n
equation?tex=0%5Csim+M 一共
equation?tex=%28M%2B1%29 个自然数值,那么就会有
equation?tex=%28M%2B1%29
equation?tex=dec%28n%5Clg2%29 的值,根据鸽巢原理,这些值中最起码有两个处于同一个小区间,换言之,存在
equation?tex=n_1%5Cne+n_2 使得(谢谢
Luffbee 在评论区指正了这里的错误,已修补):
equation?tex=%7Cdec%28n_1%5Clg2%29-dec%28n_2%5Clg2%29%7C%3C%5Cfrac1M%5C%5C 假设
equation?tex=n_1%3En_2 ,注意
equation?tex=%7Cdec%28n_1%5Clg2%29-dec%28n_2%5Clg2%29%7C%5Cneq0 ,否则
equation?tex=%28n_1-n_2%29%5Clg2 是个整数,这和
equation?tex=%5Clg2 是无理数矛盾。这样就存在两种情况,第一种情况是
equation?tex=dec%28n_1%5Clg2%29%3Edec%28n_2%5Clg2%29 ,第二种情况是
equation?tex=dec%28n_1%5Clg2%29%3Cdec%28n_2%5Clg2%29

情况一:

equation?tex=dec%28n_1%5Clg2%29%3Edec%28n_2%5Clg2%29

我们有:

equation?tex=0%3C%7Cdec%28n_1%5Clg2%29-dec%28n_2%5Clg2%29%7C%3Ddec%28%28n_1-n_2%29%5Clg2%29%3C%5Cfrac1M%5C%5C

equation?tex=q%3Dn_1-n_2 ,就得到
equation?tex=0%3Cdec%28q%5Clg2%29%3C%5Cfrac1M 。注意
equation?tex=%5Cfrac1M 小于区间
equation?tex=%5B%5Clg+m%2C%5Clg%28m%2B10%5E%7B-l%7D%29%29 的长度,所以从任一个
equation?tex=p%5Clg2 出发,不断地加
equation?tex=q%5Clg2 ,因为每加一次
equation?tex=q%5Clg2 ,小数部分就向前增一点点,并且增量小于区间
equation?tex=%5B%5Clg+m%2C%5Clg%28m%2B10%5E%7B-l%7D%29%29 的长度,
注意,当小数部分递增到接近
equation?tex=1 的时候,是会变成从
equation?tex=0 那头开始递增的,
所以,必会使得小数部分进入区间
equation?tex=%5B%5Clg+m%2C%5Clg%28m%2B10%5E%7B-l%7D%29%29 内。

情况二:

equation?tex=dec%28n_1%5Clg2%29%3Cdec%28n_2%5Clg2%29

我们有:

equation?tex=-%5Cfrac+1M%3Cdec%28n_1%5Clg2%29-dec%28n_2%5Clg2%29%3C0%5C%5C 这样就有:
equation?tex=1-%5Cfrac1M%3Cdec%28%28n_1-n_2%29%5Clg2%29%3C1%5C%5C+
equation?tex=q%3Dn_1-n_2 ,就得到
equation?tex=1-%5Cfrac1M%3Cdec%28q%5Clg2%29%3C1 。注意
equation?tex=%5Cfrac1M 小于区间
equation?tex=%5B%5Clg+m%2C%5Clg%28m%2B10%5E%7B-l%7D%29%29 的长度,所以从任一个
equation?tex=p%5Clg2 出发,不断地加
equation?tex=q%5Clg2 ,因为每加一次
equation?tex=q%5Clg2 ,小数部分就会递减一点点,每次的减小量小于区间
equation?tex=%5B%5Clg+m%2C%5Clg%28m%2B10%5E%7B-l%7D%29%29 的长度,
注意,当小数部分递减到接近
equation?tex=0
的时候,是会变成从
equation?tex=1
那头开始递减的,所以,必会使得小数部分进入区间
equation?tex=%5B%5Clg+m%2C%5Clg%28m%2B10%5E%7B-l%7D%29%29 内。

分情况讨论完毕,再回到开头,要使

equation?tex=2%5En 的十进制表示开头出现
equation?tex=N ,最起码必要求
equation?tex=2%5En%3EN ,于是
equation?tex=n%3E%5Clog_2+N 。我们就让自然数
equation?tex=p%3E%5Clog_2N ,然后从
equation?tex=p%5Clg2 出发不断地加
equation?tex=q%5Clg2 ,根据上一段的讨论,必会有某个
equation?tex=n%3Dp%2Btq 使得
equation?tex=dec%28n%5Clg2%29 进入区间
equation?tex=%5B%5Clg+m%2C%5Clg%28m%2B10%5E%7B-l%7D%29%29 内,亦即这个
equation?tex=n 满足
equation?tex=%283%29 式。

此时,根据

equation?tex=%283%29 式逆向推导,因为取的是以
equation?tex=10 为底的对数,取小数部分而省去的整数如果补回来后也不过相当于乘以
equation?tex=10 的幂,所以最后
equation?tex=2%5En 的十进制表示的开头就是
equation?tex=N 了。定理
equation?tex=2 证毕。

如果仔细分析就会发现,这个定理之所以成立,很大程度取决于

equation?tex=%5Clg2 是无理数,而非
equation?tex=2 次幂或者十进制的特殊性。所以,把证明方法稍微改一下,就可以证明:

定理

equation?tex=3 :如果
equation?tex=%5Clog_mk 为无理数,在
equation?tex=m%28%3E1%29 进制表示下,对任意正整数
equation?tex=N ,存在自然数
equation?tex=n 使得
equation?tex=k%5En
equation?tex=N 的各位数开头。

同样有相应形式的定理

equation?tex=1

另外,这里给出定理

equation?tex=2 的另一种证法,适合有微积分基础的读者看。这个方法来自评论区,由知乎用户
灵剑 给出。

equation?tex=a_1%3D%5Cfrac%7B2%5E3%7D%7B10%7D%3C1
equation?tex=a_2%3D%5Cfrac%7B2%5E4%7D%7B10%7D%3E1 ,之后的每一项是已构造的项中
大于
equation?tex=1 的最小项
小于
equation?tex=1 的最大项
的乘积。注意,这样构造的数列每一项都有形式
equation?tex=%5Cfrac%7B2%5Ek%7D%7B10%5Et%7D

我们先研究下这个数列的性质。因为

equation?tex=2%5Ek 不存在因子
equation?tex=5 ,所以这个数列不存在等于
equation?tex=1 的项。设
equation?tex=a_m 是已构造的项里边小于
equation?tex=1 的最大项,
equation?tex=a_n 是已构造的项里边大于
equation?tex=1 的最小项,那么:
equation?tex=a_m%3Ca_ma_n%3Ca_n 。这就意味着,将数列拆分为大于
equation?tex=1 和小于
equation?tex=1 的两个子列,大于
equation?tex=1 的子列是递减的,小于
equation?tex=1 的子列是递增的,
并且两个子列都有界。再者,因为
equation?tex=a_m%3Ca_ma_n%3Ca_n ,这表明新出的一项必定是大于
equation?tex=1 的最小项或小于
equation?tex=1 的最大项。因为大于
equation?tex=1 的数多次乘以
同一个小于
equation?tex=1 的正数,必会出现小于
equation?tex=1 的结果,反之,小于
equation?tex=1 的正数多次乘以
同一个大于
equation?tex=1 的正数,必会出现大于
equation?tex=1 的结果,所以,两个子列都不会是有限项的,于是两个子列有极限,设极限为
equation?tex=a
equation?tex=A
equation?tex=0%3Ca%5Cle1%5Cle+A

设已经构造了

equation?tex=M 项,则
equation?tex=a_%7BM%2B1%7D%3Da_na_m (事实上,
equation?tex=n
equation?tex=m 之中有一个是等于
equation?tex=M 的),令
equation?tex=M%5Cto%5Cinfty ,此时也有
equation?tex=n%5Cto%5Cinfty
equation?tex=m%5Cto%5Cinfty ,注意
equation?tex=a_%7BM%2B1%7D 不仅可能属于大于
equation?tex=1 的子列的,也可能是属于小于
equation?tex=1 的子列的,将这两个情况拆分开来,就得到两个极限等式:
equation?tex=%5Cbegin%7Baligned%7D+aA%26%3Da%5C%5C+aA%26%3DA+%5Cend%7Baligned%7D%5C%5C 所以
equation?tex=a%3DA%3D1 。于是存在一项
equation?tex=a_k%3D%5Cfrac%7B2%5Ep%7D%7B10%5Eq%7D 满足:
equation?tex=1%3C%5Cfrac%7B2%5Ep%7D%7B10%5Eq%7D%3C1%2B%5Cfrac1N%5Ctag4%5C%5C 这里的
equation?tex=N 就是定理
equation?tex=2 的正整数
equation?tex=N 。注意
equation?tex=a_k 是大于
equation?tex=1 的,所以存在
equation?tex=n%5Cin+%5Cmathbb%7BN%7D%5E%2B 使得:
equation?tex=%5Cleft%28%5Cfrac%7B2%5Ep%7D%7B10%5Eq%7D%5Cright%29%5E%7Bn-1%7D%3CN%5Cle%5Cleft%28%5Cfrac%7B2%5Ep%7D%7B10%5Eq%7D%5Cright%29%5En%5Ctag5%5C%5C
equation?tex=%285%29 式的左半部分乘以
equation?tex=%284%29 式的右半部分即得:
equation?tex=%5Cleft%28%5Cfrac%7B2%5Ep%7D%7B10%5Eq%7D%5Cright%29%5En%3CN%2B1%5C%5C 结合
equation?tex=%285%29 式右半部分得:
equation?tex=N%5Cle%5Cleft%28%5Cfrac%7B2%5Ep%7D%7B10%5Eq%7D%5Cright%29%5En%3CN%2B1%5C%5C

即:

equation?tex=N%5Ctimes10%5E%7Bnq%7D%5Cle2%5E%7Bnp%7D%3C%28N%2B1%29%5Ctimes10%5E%7Bnq%7D%5C%5C 定理
equation?tex=2 证得。

本文原创,禁止未经授权的转载,禁止抄袭。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值