⚠️️ Warning!Warning!前方高能,阅读本文可能需要3分钟哦!
有什么料?
重新认识神秘的PorterDuffXfermode。
学会正确的使用PorterDuffXfermode。
收获【两张示例图】,帮助你在实际中正确的运用各种混合模式。
解密PorterDuffXfermode
先上两张示例图,大家快来保存啊!
自己绘过图的筒靴一定见过或者用过mPaint.setXfermode(Xfermode xfermode),它是干什么的呢?它的作用就是将画布上的当前图像(即目标图像DST)和后面需要绘制的图像(即源图像SRC)按照一定的算法进行混合。简单点说就是把源图像SRC与目标图像DST进行混合。而ProterDuffXfermode继承自Xfermode,提供了18像素混合模式的算法,它们是由Thomas Porter和Tom Duff在 于1984年7月的一篇名为【《Compositing Digital Images》https://keithp.com/~keithp/porterduff/p253-porter.pdf】的论文中提出的。这对图像处理来说具有重大的意义。
Xfermode的意义你知道吗?
在上面的两张图中,CoorChice已经向筒靴们展示了使用Xfermode来混合简单的图形所达到的效果。
对于一些比较难画的图形,如果通过运算坐标和尺寸去绘制当然是可以的。但是这些运算将会非常复杂!如果合理的使用Xfermode去将一些简单的图形进行混合,同样可以获得你所期望的复杂图形。在CoorChice的这篇文章【从未如此惊艳!你好,SuperTextView (v1.1)http://www.jianshu.com/p/1b91e11e441d】 中,CoorChice向你展示了一个扫光特效,它的两端有个截断效果,就是通过Xfermode完成的。如果靠计算的话,实现起来会稍微费点力。
当然,这些并不能发挥Xfermode的真正威力。如果你使用它对一些图片进行混合,你会看到Xfermode到底能做什么不可思议的事!比如,在 《Compositing Design Images》 中就有一个这样的例子:
图中最后Composite的结果就是前面几张图片通过一定组合合成的,这是合成算法:
(FFire plus (BFire out Plant)) over Darken(Plant, .8) over Stars .
你看,Xfermode就是如此的强大,通过合理的组合,能合成图片。
再一看张CoorChice用图片合成的各种效果:
哇!这鱼飞起来啦!
18种混合模式
在 《Compositing Degital Images》 中,Thomas Porter和Tom Duff展示了12中基本的混合模式:
我们可以将上图中的A对应目标图像DST,B对应源图像SRC去理解。通过组合这12种混合模式,足够实现任意的2D图像合成效果了。十分的强大。对照着上面CoorChice画的图理解吧。
也许筒靴们平时都只听说PorterDuff.Mode是16种模式,因为官方的例子中就出现了16种模式。但事实上,Android提供的混合模式共有18种,筒靴们在上图中也是能看到滴。就是最后一排的ADD和OVERLAY是不常被提到的。
下面CoorChice和大家一起捋一捋这18种混合模式:
在此之前,先说明下各个符号的意义。
在支持透明通道的情况下,一个像素点通过alpha透明值和RGB色值来描述,即[alpha, rgb]。
Sa: Src Alpha,即源图像的透明值
Sc:Src color,即源图像的色值
Da:Dst Alpha,即目标图像的透明值
Dc:Dst color,即目标图像的色值
PorterDuff.Mode
算法
作用
CLEAR
[0, 0]
图像的alpha和rgb值均为0.
SRC
[Sa, Sc]
取源图像的值。
DST
[Da, Dc]
取目标图像的值。
SRC_OVER
[Sa + (1 - Sa)*Da, Rc = Sc + (1 - Sa)*Dc]
结果是Src盖在了Dst上。注意alpha值的影响,不一定是这个结果。
DST_OVER
[Sa + (1 - Sa)*Da, Rc = Dc + (1 - Da)*Sc]
结果是Dst盖在了Src上。注意alpha值的影响,不一定是这个结果。
SRC_IN
[Sa * Da, Sc * Da]
结果是在Src色值不为0的地方,且Dst透明值不为0的地方能看到合成图像。
DST_IN
[Sa * Da, Sa * Dc]
结果是在Dst色值不为0的地方,且Src透明值不为0的地方能看到合成图像。
SRC_OUT
[Sa * (1 - Da), Sc * (1 - Da)]
结果是在Src色值不为0,且Dst透明值不为1的地方能看到合成图像。
DST_OUT
[Da * (1 - Sa), Dc * (1 - Sa)]
结果是在Dst色值不为0,且Src透明值不为1的地方能看到合成图像。
SRC_ATOP
[Da, Sc * Da + (1 - Sa) * Dc]
结果是在Src和Dst色值不同时为0,且Dst透明值不为0,且当Src色值为0但Src透明值不为1的地方能看到合成图像。
DST_ATOP
[Sa, Sa * Dc + Sc * (1 - Da)]
结果是在Src和Dst色值不同时为0,且Src透明值不为0,且当Dst色值为0但Dst透明值不为1的地方能看到合成图像。
XOR
[Sa + Da - 2 * Sa * Da, Sc * (1 - Da) + (1 - Sa) * Dc]
在不相交的地方按原样绘制源图像和目标图像,相交的地方受到对应alpha和色值影响。
DARKEN
[Sa + Da - SaDa, Sc(1 - Da) + Dc*(1 - Sa) + min(Sc, Dc)]
取较暗的透明值,色值计算相对复杂。
LIGHTEN
[Sa + Da - SaDa, Sc(1 - Da) + Dc*(1 - Sa) + max(Sc, Dc)]
取较亮的透明值,色值计算相对复杂。
MUTIPLY
[Sa * Da, Sc * Dc]
结果是在Src和Dst透明值均不为0,且色值均不为0的地方能看到合成图像。
SCREEN
[Sa + Da - Sa * Da, Sc + Dc - Sc * Dc]
可以看到,它可能有多种情况,需要实际计算。
ADD
Saturate(S + D)
OVERLAY
筒靴们对着上面【Bitmap绘制】图来看这18种混合模式。
令人困惑的图
筒靴们可以看到【Bitmap绘制】图和官方的例子图是一样一样的,但是很多筒靴自己画出来的效果却和【Canvas直接绘制】图是一样一样的。嗯,百思不解!有没有可能是官方的例子错了呢?
想多了,没有的。只是筒靴们没注意到官方标准例子中的细节:
首先需要关闭硬件加速。因为硬件加速模式下,渲染是通过GPU完成的,和普通CPU渲染可能有点不一样,导致了部分合成算法呈现的效果有差异。你可以看看我的这篇文章【用两张图告诉你,为什么你的App会卡顿?http://www.jianshu.com/p/df4d5ec779c8】,了解下View的绘制流程。
其次,像素混合是对两个区域进行的。官方的示例中,黄圆和蓝正方形都是画在大小和黑色边框相等的Bitmap上的,然后再将两个Bitmap的像素进行混合,此时两个Bitmap的区域是【完全重合】的。所以得到了标准效果。而很多同学可能没注意,往往就以为两个区域大小就是两个图形的外接矩形的大小,而它们相交的地方只有1/4。所以得到了“Canvas直接绘制”图的效果。两种方式最大的差别在于,【Bitmap绘制】图中有一部分透明像素点参与了混合,而【Canvas直接绘制】图中几乎没有。
总结
抽出空余时间写文章分享需要动力,还请各位看官动动小手点个赞,给我点鼓励
我一直在不定期的创作新的干货,想要上车只需进到我的【个人主页】点个关注就好了哦。发车喽~
本篇文章向大家详细的展示了强大的PorterDuffXfermode的正确打开方式,CoorChice相信以后不会再有筒靴抱怨:我的天呐!这玩意儿有毒!为什么我合成出来的图像和官方示例不一样!
参考链接
看到这里的童鞋快奖励自己一口辣条吧!