引言
近来,在开展课题时遇到了需要将梯形波进行傅里叶级数展开的问题,查询了一些资料(惭愧,一开始就没想着自己动手积分),然后没有找到自己想要的结果(其实有相近的,只不过不是任意周期的,当时没有转变过来),最后还是动手算出来了,在这里做一个小小的记录,算是回顾以前的知识吧,捂脸。
由于像三角波,矩形波,梯形波这种波形不连续,因此在仿真软件中很容易出现计算不收敛的情况。所以,在这种情况下,利用一系列谐波叠加的形式来等价于原来的波形,可以很好的优化模型。
预备知识
公式
给定一个周期为 \(T\) 的函数 \(x(t)\) ,那么它可以表示为无穷级数:
\[
f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} \left [a_n \cos \left (\frac{2 {\pi} nx}{T} \right ) + b_n \sin \left (\frac{2 {\pi} nx}{T} \right ) \right ] = \sum_{n=-\infty}^{\infty} c_n e^{i \frac{2 {\pi} nx}{T} }
\]
其中傅里叶系数为:
\[
\left \{ \begin{aligned}
a_n = &\frac{2}{T} \int_{t_0}^{t_0+T} f(t) \cdot \cos \left (\frac{2 {\pi} nt}{T} \right )dt \qquad &n=0, 1, 2, \cdots \\[2ex]
b_n = &\frac{2}{T} \int_{t_0}^{t_0+T} f(t) \cdot \sin \left (\frac{2 {\pi} nt}{T} \right )dt &n=1, 2,3, \cdots \\[2ex]
c_n = &\frac{1}{T} \int_{t_0}^{t_0+T} f(t) \cdot e^{-i \frac{2 {\pi} nt}{T} }dt &n=0, \pm 1, \pm 2, \cdots
\end{aligned} \right.
\]
性质
收敛性
在闭区间上满足狄利克雷条件的函数表示成的傅里叶级数都收敛。狄利克雷条件如下:
在定义区间上,\(x(t)\)需绝对可积;
在任一有限区间中,\(x(t)\)只能取有限个极值点;
在任何有限区间上,\(x(t)\)只能有有限个第一类间断点。
满足上述条件的\(x(t)\)傅里叶级数都收敛,且:
当\(t\)是\(x(t)\)的连续点时,级数收敛于\(x(t)\)
当\(t\)是\(x(t)\)的间断点时,级数收敛于\(\frac{1}{2} \left [x(t^-)+x(t^+) \right ]\)
正交性
所谓的两个不同向量正交是指它们的内积为0,这也就意味着这两个向量之间没有任何相关性,例如,在三维欧式空间中,互相垂直的向量之间是正交的。三角函数族的正交性用公式表示出来就是:
\[
\left\{ \begin{aligned}
&\int_0^{2 \pi} \cos(mx) \cdot \cos(nx) dx =0 \qquad (m \ne n) \\[2ex]
&\int_0^{2 \pi} \sin(nx) \cdot \sin(nx) dx = \pi \\[2ex]
&\int_0^{2 \pi} \cos(nx) \cdot \cos(nx) dx = \pi
\end{aligned} \right.
\]
奇偶性
奇函数\(f_o(