实现循环队列的入队,出队等基本操作
循环队列的基本操作
??
一、实验目的 1. 理解并掌握队列的逻辑结构和顺序存储结构,了解循环队列的特点; 2. 掌握循环队列中基本操作的相关算法; 3. 编程实现相关算法; 4. 学会利用循环队列解决实际问题。 二、实验条件 Visual C++。 三、实验原理及相关知识 1. 循环队列存储结构描述 #define MAXSIZE 100 //最大队列长度 typedef struct { QElemType *base; //存储空间基址 int front; //头指针 int rear; //尾指针 }SqQueue; 2. 基本操作的算法描述 设下标为index,队列长度为m,则下一个下标的累进循环计算公式为: index_next = ( index+1 ) % m。 实验中涉及的三个关键操作时循环队列中求队列长度、入队和出队操作。 (1) 求长度 所谓求队列长度,即技术队列中元素的个数。 算法思想:根据循环队列的结构特征,可以用公式(Q.rear-Q.front+ MAXSIZE)%MAXSIZE直接计算出队列的长度。 算法描述 Status QueueLength(SqQueue Q) { return ( ( Q.rear-Q.front+ MAXSIZE) %MAXSIZE); }//QueueLength (2) 入队 入队运算实际上相当于顺序表中的插入运算,所不同的是这里只能在队尾插入元素。 算法思想:① 将元素e插入循环队列中队尾元素的下一个存储空间 ② 修改队尾指针,根据循环累计公式计算出其新位置 算法描述 Status EnQueue(SqQueue &Q, QElemType e) {? if ( ( Q.rear + 1 ) % MAXSIZE == Q.front ) return ERROR; //队列满 Q.base[Q.rear] = e; Q.rear = ( Q.rear + 1 ) % MAXSIZE; return OK; }// EnQueue (3) 出队 出队运算实际上相当于顺序表中的删除运算,所不同的是这里只能在队头删除元素。 算法思想:修改队头指针,根据循环累计公式计算出其新位置 算法描述 Status DeQueue(SqQueue &Q, QElemType &e) {? if (Q.rear == Q.front ) return ERROR; //队列为空 e = Q.base[Q.front]; Q.front = ( Q.front + 1 ) % MAXSIZE; return OK; }// DeQueue 四、实验步骤? 1. 使用C语言实现循环队列的初始化、计算长度、入队、出队和遍历算法 2. 用顺序存储方式构造一个循环队列Q,并输出构造好的队列和该队列的长度 3. 在第1步所构造的队列Q中将元素e入队,并将更新后的队列Q输出 4. 在第2步更新后所得到的队列Q中将队头元素出队,用变量e返回该元素,并将更新后的队列Q输出 五、思考题及其它 1. 使用循环队列实现输出杨辉三角的前N行 2. 如何使用循环队列解决“猴子选大王“问题 【参考程序】 #include "stdio.h" #include "malloc.h" #define OK 1 #define ERROR 0 #define MAXQSIZE 10 /*最大队列长度+1*/ typedef int QElemType; typedef struct {? QElemType *base;? int front;? int rear;? } SqQueue; int InitQueue(SqQueue *Q){ Q->base=(QElemType *)malloc(MAXQSIZE*sizeof(QElemType)); if(!Q->base) return ERROR; Q->front = Q->rear = 0; return OK; } int EnQueue(SqQueue *Q,QElemType e) {? if( (Q->rear+1)%MAXQSIZE==Q->front ) // 队列满 return ERROR; Q->base[Q->rear]=e; Q->rear