离散数学作业册.doc
(44页)
本资源提供全文预览,点击全文预览即可全文预览,如果喜欢文档就下载吧,查找使用更方便哦!
14.90 积分
班级_____________________ 序号____________________ 姓名________________________第一章 命题逻辑1.1 命题与逻辑联结词1. 判断下列语句是否是命题,不是划“×”,是划“√”,且指出它的真值.(1)所有的素数都是奇数. ( ) 其真值( )(2)明天有离散数学课吗? ( ) 其真值( )(3). ( ) 其真值( )(4)实践出真知. ( ) 其真值( )(5)这朵花真好看呀! ( ) 其真值( )(6). ( ) 其真值( )(7)太阳系外有宇宙人. ( ) 其真值( )2. 将下列命题符号化.(1)如果天下雨,那么我不去图书馆. (2)若地球上没有水和空气,则人类无法生存.(3)我们不能既划船又跑步.(4)大雁北回,春天来了.3.将下列复合命题分解成若干个原子命题,并找出适当的联结词.(1)天下雨,那么我不去图书馆.(2)若地球上没有水和空气,则人类无法生存.1.2 命题公式1. 判断下列各式是否是命题公式,不是的划“×”,是的划“√”.(1)(Q®R∧S). ( )(2)((R®(Q®R)®(P®Q)). ( )(3) (P∨QR)®S. ( )(4)((ØP®Q)®(Q®P)). ( )2.写出五个常用命题联结词的真值表.1.3 真值表与等价公式1.指出下列命题的成真赋值与成假赋值.(1)Ø(P∨ØQ).(2)ØP®(Q®P).2.构造真值表,判断下列公式的类型.(1)(P∧Q)∧Ø(P∨Q).(2) P→(P∧┑Q))∨R.3.用等值演算法验证下列各等价式.(1) ((P→Q)∧(Q→R))→(P→R)T.(2)P®(Q∧R)Û(P®Q)∧(P®R).(3)Ø(P∨Q)∨(ØP∧Q)ÛØP.1.4 蕴涵式及其他联结词1.试证明下列各式为重言式.(1) (P®Q)∧(Q®R)Þ(P®R).(2) (P→Q)→QP∨Q.(3) Ø(P¯Q)ØPØQ.2.将下列公式化成与之等价且仅含{┑,∨}中联结词的公式.(1) (P∨Q)∧┑P(2) (P→(Q∨┑R))∧(┑P∧Q)3.证明{Ø,∧}是最小全功能联结词组.4.设A、B、C为任意的三个命题公式,试问下面的结论是否正确?(1)若A∧CÛB∧C,则AÛB.(2)若ØAÛØB,则AÛB.(3)若A®CÛB®C,则AÛB.1.6 对偶与范式1.试给出下列命题公式的对偶式.(1)T∨(P∧Q).(2)Ø(P∧Q)∧(ØP∨Q).2.试求下列各公式的主析取范式和主合取范式.(1) (P→(Q∧R))∧(┑P→(┑Q→R)).(2)(Ø(P®Q)∧Q)∨R.(3)(P®(Q∨R))∧(ØP∨(Q«R)).3.试用将公式化为主范式的方法,证明下列各等价式.(1) (┑P∨Q)∧(P→R)P→(Q∧R)(2) ┑(PQ)(P∧┑Q)∨(┑P∧Q)1.7 推理理论1.试用推理规则,论证下列各式.(1) ┑(P∧┑Q),┑Q∨R,┑R┑P(2) P∨Q,Q→R,P→S,┑SR∧(P∨Q)(3) ┑P∨Q,┑Q∨R,R→SP→S(4) P∨Q,P→R,Q→SR∨S第二章 谓词逻辑2.1 词的概念与表示1.用谓词表达写出下列命题.(1) 高斯是数学家,但不是文学家.(2)小王既是运动员也是大学生.(3)张宁和李强都是三好学生.(4)若是奇数,则2不是奇数.2.2 命题函数与量词1.用谓词表达式写出下列命题.(1) 每个计算机系的学生都学离散数学.(2)直线A平行于直线B当且仅当直线A不相交于直线B.(3)不存在既是奇数又是偶数的自然数.(4)没有运动员不是强壮的.(5)有些有理数是实数但不是整数.(6)所有学生都钦佩某些教师.2.3 谓词公式与变元的约束1.利用谓词公式翻译下列命题.(1)没有一个奇数是偶数.(2)一个整数是奇数,如果它的平方是奇数.2. 设个体域为自然数集N,令P(x):x是素数;E(x):x是偶数;O(x):x是奇数;D(x,y):x整除y.将下列各式译成汉语.(1)$x(E(x)∧D(x,6)).(2)"x(O(x)®"y(P(x)®ØD(x,y))).3.指出下列表达示中的自由变元和约束变元,并指明量词的辖域.(1).(2)"x(P(x,y)∨Q(z))∧$y(R(x,y)® "zQ(z)).4.设个体域为A={a,b,c},消去公式"xP(x)∧$xQ(x)中的量词.2.4 谓词演算的等价式与蕴含式1.试证下列等价式或蕴涵式,其中A(x),B(x)表示含x自由变量的公式,A,B表示不含变量x(不论是自由的还是约束的)的公式.(1)(x A(x)→B)(x(A(x)→B)).(2)(x A(x)→B)x(A(x)→B).2.试将下列公式化成等价的前束范式.(1)x((┑yP(x,y))→(zQ(z)→R(x))).(2)"x(F(x)®G(x))®($xF(x)®$xG(x)).2.5 谓词演算的推理理论1.证明下列推理.(1)所有有理数都是实数,某些有理数是整数。因此,某些实数是整数.(2)每个大学生不是文科生就是理科生,有些大学生是优等生,小张不是理科生,但他是优等生.因而,如果小张是大学生,他就是文科学生.2.将下列的命题符号化,并证明之.已知每一个大学生都是诚实的,而小李是不诚实的,证明小李不是大学生.第三章 集合代数1.在1到200的整数中(1和200包含在内)分别求满足以下条件的整数个数(1)可以被3整除,但不能被5或7整除.(2)可以被3或5整除,但不能被7整除.2.化简下列集合表达式(1)(A-(B∩C)∪(A∩B∩C).(2)(A∩B)-(C-(A∪B)).3.计算幂集.(1). (2).第四章 二元关系4.1序偶与笛卡儿积1.设A={a,b},求集合P(A)×A.2.设A、B、C和D为任意集合,判断下列命题是否正确?(1)A×B=A×CÞB=C.(2)(A-B)×C=(A×C)-(B×C).(3)存在集合A使得AÍA×A.4.2二元关系1.写出下列关系R的序偶集合(1)A=, xRyA∧.(2)A=, xRyA∧.2. 设,,从A到B的关系,试给出R的关系图和关系矩阵.3.设A={1,2,3,4},A上关系R的关系的图为写出R的表达式.4.3 关系的运算1.A={a,b,c,d},R1和R2是A上关系,R1={,,},R2={
天天文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。