漂亮的数据对比分析图_数据分析实战--对比分析

本文介绍了如何利用matplotlib库进行数据对比分析的可视化,包括绝对比较和相对数比较。内容涉及折线图、柱状图、堆叠图以及面积图的使用,展示了A/B产品在销售额上的差异和营收占比的计算,旨在提供数据分析实践中的图形展示技巧。
摘要由CSDN通过智能技术生成

本文主要讲的是对比分析的一些可视化作图,用来练练matplotlib不错。主要内容有:两个相互联系的指标的比较(绝对比较)、相对比较两方面。

0 模块导入

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号

1.对比分析 → 两个互相联系的指标进行比较(绝对比较)

创建数据 → 30天内A/B产品的日销售额

data = pd.DataFrame(np.random.rand(30,2)*1000,
                    columns=['A_sale','B_sale'],
                    index = pd.period_range('20170601','20170630')
                    )
fig,ax = plt.subplots(4,1,figsize=(10,15))
plt.subplots_adjust(hspace=0.5)

(1)折线图比较 AB产品销量对比图-折线图

data.plot(kind = 'line',
          style='--',
          alpha = 0.8,
          title = 'AB产品销量对比图-折线图',
          ax = ax[0])
2、相对数比较 → 相除(相对)

(2)多系列柱状图比较 AB产品销量对比-柱状图

data.plot(kind = 'bar',
   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值