第2章 SparkSQL编程

上篇:第1章 Spark SQL概述


1、SparkSession新的起始点

在老的版本中,SparkSQL提供两种SQL查询起始点:一个叫SQLContext,用于Spark自己提供的SQL查询;一个叫HiveContext,用于连接Hive的查询。
SparkSession是Spark最新的SQL查询起始点,实质上是SQLContext和HiveContext的组合,所以在SQLContext和HiveContext上可用的API在SparkSession上同样是可以使用的。SparkSession内部封装了sparkContext,所以计算实际上是由sparkContext完成的。


2、DataFrame

创建

在Spark SQL中SparkSession是创建DataFrame和执行SQL的入口,创建DataFrame有三种方式:通过Spark的数据源进行创建;从一个存在的RDD进行转换;还可以从Hive Table进行查询返回。

从Spark数据源进行创建
(1)查看Spark数据源进行创建的文件格式

scala> spark.read.
csv   format   jdbc   json   load   option   options   orc   parquet   schema   table   text   textFile

准备数据
在这里插入图片描述
2.json编辑内容:

[root@hadoop105 datas]# vim 2.json 

{"name":"zhangsan","age":20}
{"name":"lisi","age":24}
{"name":"wangwu","age":27}

(2)读取json文件创建DataFrame

//读取json文件创建DataFrame
scala> spark.read.json("file:///usr/local/hadoop/module/datas/2.json")
res24: org.apache.spark.sql.DataFrame = [age: bigint, name: string]

//创建一个DataFrame
scala> val df=spark.read.json("file:///usr/local/hadoop/module/datas/2.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]

(3)结果展示

scala> df.show
+---+--------+
|age|    name|
+---+--------+
| 20|zhangsan|
| 24|    lisi|
| 27|  wangwu|
+---+--------+

由于我们当前没有数据表,但我们可以这样执行:

//创建一张student表的视图(对DataFrame创建一个临时表)
scala> df.createTempView("student")

//即可直接查询student数据表(数据是通过SQL语句实现查询全表)
scala> spark.sql("select * from student").show
+---+--------+
|age|    name|
+---+--------+
| 20|zhangsan|
| 24|    lisi|
| 27|  wangwu|
+---+--------+

//条件查询
scala> spark.sql("select age from  student").show
+---+
|age|
+---+
| 20|
| 24|
| 27|
+---+

//查询年龄取平均值
scala> spark.sql("select avg(age) from  student").show
+------------------+
|          avg(age)|
+------------------+
|23.666666666666668|
+------------------+


2.2、SQL风格语法(主要)

(1)创建一个会话注意事项

//创建一个会话sql
scala> spark.newSession.sql("select age from student").show

报错信息:
在这里插入图片描述
尝试再次执行:

//回车键查看
scala> df
res32: org.apache.spark.sql.DataFrame = [age: bigint, name: string]

//Tab键查看
scala> df.create
createGlobalTempView   createOrReplaceTempView   createTempView

//对于DataFrame创建一个全局表
scala> df.createGlobalTempView("emp")

scala> spark.sql("select * from emp").show

报错信息:
在这里插入图片描述
正确写法,执行如下:

scala> spark.sql("select * from global_temp.emp").show
+---+--------+
|age|    name|
+---+--------+
| 20|zhangsan|
| 24|    lisi|
| 27|  wangwu|
+---+--------+

注意:
临时表是Session范围内的,Session退出后,表就失效了。如果想应用范围内有效,可以使用全局表。注意使用全局表时需要全路径访问,如:global_temp.emp

若遵守以上规则,我们尝试换另一种写法,照样可以获取:

scala> spark.newSession.sql("select * from global_temp.emp").show
+---+--------+
|age|    name|
+---+--------+
| 20|zhangsan|
| 24|    lisi|
| 27|  wangwu|
+---+--------+


2.3、 DSL风格语法(次要)

(1)查看DataFrame的Schema信息

//回车键
scala> df.printSchema
root
 |-- age: long (nullable = true)
 |-- name: string (nullable = true)

(2)只查看”name”列数据

scala> df.select("name").show()
+--------+
|    name|
+--------+
|zhangsan|
|    lisi|
|  wangwu|
+--------+

(3)查看”name”列数据以及”age+1”数据

//只查看年龄
scala> df.select("age").show()
+---+
|age|
+---+
| 20|
| 24|
| 27|
+---+

//若查看年龄都加1,这样执行会报错
scala> df.select("age"+1).show()

报错信息:
在这里插入图片描述
正确执行:

//需要添加“$”符号
scala> df.select($"age"+1).show()
+---------+
|(age + 1)|
+---------+
|       21|
|       25|
|       28|
+---------+

(3)查看”age”大于”21”的数据

scala>  df.filter($"age" > 21).show()
+---+------+
|age|  name|
+---+------+
| 24|  lisi|
| 27|wangwu|
+---+------+

(4)按照”age”分组,查看数据条数

scala> df.groupBy("age").count().show()
+---+-----+                                                                     
|age|count|
+---+-----+
| 27|    1|
| 20|    1|
| 24|    1|
+---+-----+


2.4、RDD转换为DateFrame

注意:如果需要RDD与DF或者DS之间操作,那么都需要引入 import spark.implicits._ 【spark不是包名,而是sparkSession对象的名称
前置条件:导入隐式转换并创建一个RDD

通过手动确定转换

//导入隐式转换
scala> import spark.implicits._
import spark.implicits._

//创建RDD
scala> val rdd =sc.makeRDD(List(1,2,3,4))
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[98] at makeRDD at <console>:27

//创建DataFrame(结构) 
scala> rdd.toDF("id")
res45: org.apache.spark.sql.DataFrame = [id: int]

//修改一下DataFrame
scala> val df= rdd.toDF("id")
df: org.apache.spark.sql.DataFrame = [id: int]

//主键(将普通数据增加结构化信息,有了含义就灵活查询sql)
scala> df.show
+---+
| id|
+---+
|  1|
|  2|
|  3|
|  4|
+---+

案例:

//创建一个RDD
scala> val rdd = sc.makeRDD(List((1,"zhangsan",20),(2,"lisi",25),(3,"wangwu",28)))
rdd: org.apache.spark.rdd.RDD[(Int, String, Int)] = ParallelCollectionRDD[102] at makeRDD at <console>:27

//把刚才创建的指定一下结构(字段)
scala> rdd.toDF("id","name","age")
res47: org.apache.spark.sql.DataFrame = [id: int, name: string ... 1 more field]

//取名
scala> val df = rdd.toDF("id","name","age")
df: org.apache.spark.sql.DataFrame = [id: int, name: string ... 1 more field]

//展现
scala> df.show
+---+--------+---+
| id|    name|age|
+---+--------+---+
|  1|zhangsan| 20|
|  2|    lisi| 25|
|  3|  wangwu| 28|
+---+--------+---+

如这张图:
在这里插入图片描述
RDD可以转换DataFrame


2.5、DataSet

通过反射确定(需要用到样例类)

//创建一个样例类
scala> case class People(name:String, age:Int)
defined class People

//创建一个RDD
scala> val rdd = sc.makeRDD(List(("zhangsan",23),("lisi",27),("wangwu",29)))
rdd: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[106] at makeRDD at <console>:27

//根据样例类将RDD转换为对象类型
scala> val people =rdd.map(t => {People(t._1,t._2)}  )
people: org.apache.spark.rdd.RDD[People] = MapPartitionsRDD[107] at map at <console>:31

//根据样例类将RDD转换为DataFrame
scala> val df = people.toDF
df: org.apache.spark.sql.DataFrame = [name: string, age: int]

//展示
scala> df.show
+--------+---+
|    name|age|
+--------+---+
|zhangsan| 23|
|    lisi| 27|
|  wangwu| 29|
+--------+---+


2.6、DateFrame转换为RDD

有结构的数据转化为无结构

直接调用rdd即可

//将DataFrame转换为RDD
scala> df.rdd
res50: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = MapPartitionsRDD[114] at rdd at <console>:36

//打印RDD
scala> df.collect
res51: Array[org.apache.spark.sql.Row] = Array([zhangsan,23], [lisi,27], [wangwu,29])


2.7、DataSet

Dataset是具有强类型的数据集合,需要提供对应的类型信息。

//创建一个样例类
scala> case class Person(name: String, age: Long)
defined class Person

//创建DataSet
scala> val caseClassDS = Seq(Person("Andy", 32)).toDS()
caseClassDS: org.apache.spark.sql.Dataset[Person] = [name: string, age: bigint]

//显示
scala> caseClassDS.show
+----+---+
|name|age|
+----+---+
|Andy| 32|
+----+---+

//DataSet
scala> caseClassDS.createTempView("xxx")
scala> spark.sql("select * from xxx").show
+----+---+
|name|age|
+----+---+
|Andy| 32|
+----+---+

DataFrame与Dataset结构不同


RDD转换为DataSet

SparkSQL能够自动将包含有case类的RDD转换成DataFrame,case类定义了table的结构,case类属性通过反射变成了表的列名。

//查看是否有创建过rdd
scala> rdd
res58: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[106] at makeRDD at <console>:27

//打印rdd信息
scala> rdd.collect
res59: Array[(String, Int)] = Array((zhangsan,23), (lisi,27), (wangwu,29))

//   创建一个样例类
scala> case class Person(name: String, age: Long)
defined class Person

//将RDD转化为DataSet
scala> val mapRDD =rdd.map(t => { Person(t._1,t._2) } )
mapRDD: org.apache.spark.rdd.RDD[Person] = MapPartitionsRDD[119] at map at <console>:31

scala> mapRDD.toDS
res60: org.apache.spark.sql.Dataset[Person] = [name: string, age: bigint]

//打印还是有数据
scala> mapRDD.toDS.show
+--------+---+
|    name|age|
+--------+---+
|zhangsan| 23|
|    lisi| 27|
|  wangwu| 29|
+--------+---+

DataSet转换为RDD

调用rdd方法即可。

//查看是Dataset类型
scala> val ds = mapRDD.toDS
ds: org.apache.spark.sql.Dataset[Person] = [name: string, age: bigint]

//调用rdd方法,就转化为rdd
scala> ds.rdd
res62: org.apache.spark.rdd.RDD[Person] = MapPartitionsRDD[124] at rdd at <console>:36


DataFrame与DataSet的互操作

DataFrame转换为DataSet:

//打印rdd的数据信息
scala> rdd.collect
res63: Array[(String, Int)] = Array((zhangsan,23), (lisi,27), (wangwu,29))

//把RDD转化为DataFrame 
scala> val df = rdd.toDF("name","age")
df: org.apache.spark.sql.DataFrame = [name: string, age: int]

//DataFrame转化为Dataset
scala> df.as[Person]
res64: org.apache.spark.sql.Dataset[Person] = [name: string, age: int]

Dataset转换为DataFrame

//查看是Dataset类型
scala> val ds =df.as[Person]
ds: org.apache.spark.sql.Dataset[Person] = [name: string, age: int]

//Dataset转换为DataFrame类型
scala> df.toDF
res66: org.apache.spark.sql.DataFrame = [name: string, age: int]

这种方法就是在给出每一列的类型后,使用as方法,转成Dataset,这在数据类型是DataFrame又需要针对各个字段处理时极为方便。在使用一些特殊的操作时,一定要加上 import spark.implicits._ 不然toDF、toDS无法使用。


RDD、DataFrame、DataSet

在这里插入图片描述
在SparkSQL中Spark为我们提供了两个新的抽象,分别是DataFrame和DataSet。他们和RDD有什么区别呢?首先从版本的产生上来看:
RDD (Spark1.0) —> Dataframe(Spark1.3) —> Dataset(Spark1.6)
如果同样的数据都给到这三个数据结构,他们分别计算之后,都会给出相同的结果。不同是的他们的执行效率和执行方式。
在后期的Spark版本中,DataSet会逐步取代RDD和DataFrame成为唯一的API接口。


三者的共性

1、RDD、DataFrame、Dataset全都是spark平台下的分布式弹性数据集,为处理超大型数据提供便利

2、三者都有惰性机制,在进行创建、转换,如map方法时,不会立即执行,只有在遇到Action如foreach时,三者才会开始遍历运算。

3、三者都会根据spark的内存情况自动缓存运算,这样即使数据量很大,也不用担心会内存溢出。

4、三者都有partition的概念

5、三者有许多共同的函数,如filter,排序等

6、在对DataFrame和Dataset进行操作许多操作都需要这个包进行支持import spark.implicits._

7、DataFrame和Dataset均可使用模式匹配获取各个字段的值和类型
DataFrame:

testDF.map{
      case Row(col1:String,col2:Int)=>
        println(col1);println(col2)
        col1
      case _=>
        ""
    }

Dataset:

case class Coltest(col1:String,col2:Int)extends Serializable //定义字段名和类型
    testDS.map{
      case Coltest(col1:String,col2:Int)=>
        println(col1);println(col2)
        col1
      case _=>
        ""
    }

三者的区别

1、RDD:

(1)RDD一般和spark mlib同时使用

(2)RDD不支持sparksql操作

2、 DataFrame:

(1)与RDD和Dataset不同,DataFrame每一行的类型固定为Row,每一列的值没法直接访问,只有通过解析才能获取各个字段的值,如:

testDF.foreach{
  line =>
    val col1=line.getAs[String]("col1")
    val col2=line.getAs[String]("col2")
}

(2)DataFrame与Dataset一般不与spark mlib同时使用

(3)DataFrame与Dataset均支持sparksql的操作,比如select,groupby之类,还能注册临时表/视窗,进行sql语句操作,如:

(4)DataFrame与Dataset支持一些特别方便的保存方式,比如保存成csv,可以带上表头,这样每一列的字段名一目了然

//保存
val saveoptions = Map("header" -> "true", "delimiter" -> "\t", "path" -> "hdfs://hadoop105:9000/test")
datawDF.write.format("com.atguigu.spark.csv").mode(SaveMode.Overwrite).options(saveoptions).save()
//读取
val options = Map("header" -> "true", "delimiter" -> "\t", "path" -> "hdfs://hadoop105:9000/test")
val datarDF= spark.read.options(options).format("com.atguigu.spark.csv").load()

利用这样的保存方式,可以方便的获得字段名和列的对应,而且分隔符(delimiter)可以自由指定。

3、 Dataset:

(1)Dataset和DataFrame拥有完全相同的成员函数,区别只是每一行的数据类型不同。

(2)DataFrame也可以叫Dataset[Row],每一行的类型是Row,不解析,每一行究竟有哪些字段,各个字段又是什么类型都无从得知,只能用上面提到的getAS方法或者共性中的第七条提到的模式匹配拿出特定字段。而Dataset中,每一行是什么类型是不一定的,在自定义了case class之后可以很自由的获得每一行的信息

case class Coltest(col1:String,col2:Int)extends Serializable //定义字段名和类型
/**
 rdd
 ("a", 1)
 ("b", 1)
 ("a", 1)
**/
val test: Dataset[Coltest]=rdd.map{line=>
      Coltest(line._1,line._2)
    }.toDS
test.map{
      line=>
        println(line.col1)
        println(line.col2)
    }

可以看出,Dataset在需要访问列中的某个字段时是非常方便的,然而,如果要写一些适配性很强的函数时,如果使用Dataset,行的类型又不确定,可能是各种case class,无法实现适配,这时候用DataFrame即Dataset[Row]就能比较好的解决问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值