首先,DEBUG = False在settings.py中,所以不,connections['default'].queries在耗尽所有内存之前不会增长。
让我们从这样一个事实开始:我已经用10000个用户从django.contrib.auth.models.User加载了User表(每个名为“test”,其中#是1到10000之间的数字)。
以下是视图:from django.contrib.auth.models import User
from django.http import HttpResponse
import time
def leak(request):
print "loading users"
users = []
users += list(User.objects.all())
users += list(User.objects.all())
users += list(User.objects.all())
users += list(User.objects.all())
users += list(User.objects.all())
users += list(User.objects.all())
users += list(User.objects.all())
users += list(User.objects.all())
users += list(User.objects.all())
users += list(User.objects.all())
users += list(User.objects.all())
users += list(User.objects.all())
users += list(User.objects.all())
users += list(User.objects.all())
users += list(User.objects.all())
users += list(User.objects.all())
users += list(User.objects.all())
print "sleeping"
time.sleep(10)
return HttpResponse('')
我已经将上面的视图附加到/leak/url并启动开发服务器(DEBUG=False,我已经测试过,它与运行开发服务器与其他实例无关)。
运行后:% curl http://localhost:8000/leak/
runserver进程的内存增长到下面的ps aux输出中看到的大小,然后保持在该级别。USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
dlamotte 25694 11.5 34.8 861384 705668 pts/3 Sl+ 19:11 2:52 /home/dlamotte/tmp/django-mem-leak/env/bin/python ./manage.py runserver
然后运行上面的curl命令似乎不会增加实例的内存使用量(这是我从真正的内存泄漏中得到的?),一定是在重复使用内存?但是,我觉得这里有一些错误,内存没有被释放到系统中(但是,我理解python不释放内存可能会有更好的性能)。
接下来,我天真地试图查看python是否会释放它分配的大量内存。因此,我在python会话中尝试执行以下操作:>>> a = ''
>>> a += 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' * 10000000
>>> del a
内存按预期分配到a += ...行,但当del a发生时,内存被释放。为什么django查询集的行为不同?这是django打算做的事情吗?有办法改变这种行为吗?
我花了两天时间调试这个行为,不知道下一步该怎么做(我已经学会了使用guppy和objgraph,它们似乎并没有指向任何我能找到的有趣的东西)。
更新:这可能只是工作中的python内存管理,与Django(Django用户邮件列表中建议的)无关,但我希望通过某种方式在Django之外的python中复制这一点来确认。
更新:使用python 2.6.5版