flink processwindowfunction_Flink处理函数实战之三:窗口处理

本文是《Flink处理函数实战》系列的第三篇,内容是学习以下两个窗口相关的处理函数:

  1. ProcessAllWindowFunction:处理每个窗口内的所有元素;
  2. ProcessWindowFunction:处理指定key的每个窗口内的所有元素;

前文链接

  1. 《深入了解ProcessFunction的状态操作(Flink-1.10)》
  2. 《Flink处理函数实战之一:ProcessFunction类》
  3. 《Flink处理函数实战之二:KeyedProcessFunction类》

关于ProcessAllWindowFunction

  • ProcessAllWindowFunction和《Flink处理函数实战之一:ProcessFunction类》中的ProcessFunction类相似,都是用来对上游过来的元素做处理,不过ProcessFunction是每个元素执行一次processElement方法,ProcessAllWindowFunction是每个窗口执行一次process方法(方法内可以遍历该窗口内的所有元素);
  • 用类图对比可以更形象的认识差别,下图左侧是ProcessFunction,右侧是ProcessAllWindowFunction:
cd92690df0c50259d37ce450dc552942.png

关于ProcessWindowFunction

ProcessWindowFunction和KeyedProcessFunction类似, 都是处理分区的数据,不过KeyedProcessFunction是每个元素执行一次processElement方法,而ProcessWindowFunction是每个窗口执行一次process方法(方法内可以遍历该key当前窗口内的所有元素);用类图对比可以更形象的认识差别,下图左侧是KeyedProcessFunction,右侧是ProcessWindowFunction:
418ca6f829624f5aba75d6b1d635f224.png
  • 另外还一个差异:ProcessWindowFunction.process方法的入参就有分区的key值,而KeyedProcessFunction.processElement方法的入参没有这个参数,而是需要Context.getCurrentKey()才能取到分区的key值;

注意事项:

窗口处理函数的process方法,以ProcessAllWindowFunction为例,如下图红框所示,其入参可以遍历当前窗口内的所有元素,这意味着当前窗口的所有元素都保存在堆内存中,所以请在设计阶段就严格控制窗口内元素的内存使用量,避免耗尽TaskManager节点的堆内存:

d36a7abbc7bd9752e99bc190e5ebdba9.png

接下来通过实战学习ProcessAllWindowFunction和ProcessWindowFunction;

版本信息

  1. 开发环境操作系统:MacBook Pro 13寸, macOS Catalina 10.15.4
  2. 开发工具:IntelliJ IDEA 2019.3.2 (Ultimate Edition)
  3. JDK:1.8.0_121
  4. Maven:3.3.9
  5. Flink:1.9.2

源码下载

如果您不想写代码,整个系列的源码可在GitHub下载到,地址和链接信息如下表所示(https://github.com/zq2599/blog_demos):

6b32f0b0b92bccbe196ae9103d52e734.png

这个git项目中有多个文件夹,本章的应用在flinkstudy文件夹下,如下图红框所示:

6b32f0b0b92bccbe196ae9103d52e734.png

如何实战ProcessAllWindowFunction

接下来通过以下方式验证ProcessAllWindowFunction功能:

  1. 每隔1秒发出一个Tuple2对象,对象的f0字段在aaa和bbb之间变化,f1字段固定为1;
  2. 设置5秒的滚动窗口;
  3. 自定义ProcessAllWindowFunction扩展类,功能是统计每个窗口内元素的数量,将统计结果发给下游算子;
  4. 下游算子将统计结果打印出来;
  5. 核对发出的数据和统计信息,看是否一致;

开始编码

  • 继续使用《Flink处理函数实战之一:ProcessFunction类》一文中创建的工程flinkstudy
  • 新建ProcessAllWindowFunctionDemo类,如下:
package com.bolingcavalry.processwindowfunction;import org.apache.flink.api.java.tuple.Tuple2;import org.apache.flink.streaming.api.TimeCharacteristic;import org.apache.flink.streaming.api.datastream.DataStream;import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;import org.apache.flink.streaming.api.functions.source.SourceFunction;import org.apache.flink.streaming.api.functions.windowing.ProcessAllWindowFunction;import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;import org.apache.flink.streaming.api.windowing.time.Time;import org.apache.flink.streaming.api.windowing.windows.TimeWindow;import org.apache.flink.util.Collector;import java.text.SimpleDateFormat;import java.util.Date;public class ProcessAllWindowFunctionDemo {    public static void main(String[] args) throws Exception {        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();        // 使用事件时间        env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime);        // 并行度为1        env.setParallelism(1);        // 设置数据源,一共三个元素        DataStream> dataStream = env.addSource(new SourceFunction>() {            @Override            public void run(SourceContext> ctx) throws Exception {                for(int i=1; i(name, 1), timeStamp);                    // 每发射一次就延时1秒                    Thread.sleep(1000);                }            }            @Override            public void cancel() {            }        });        // 将数据用5秒的滚动窗口做划分,再用ProcessAllWindowFunction        SingleOutputStreamOperator mainDataStream = dataStream                // 5秒一次的滚动窗口                .timeWindowAll(Time.seconds(5))                // 统计当前窗口内的元素数量,然后把数量、窗口起止时间整理成字符串发送给下游算子                .process(new ProcessAllWindowFunction, String, TimeWindow>() {                    @Override                    public void process(Context context, Iterable> iterable, Collector collector) throws Exception {                        int count = 0;                        // iterable可以访问当前窗口内的所有数据,                        // 这里简单处理,只统计了元素数量                        for (Tuple2 tuple2 : iterable) {                            count++;                        }                        // 将当前窗口的起止时间和元素数量整理成字符串                        String value = String.format("window, %s - %s, %d",                                // 当前窗口的起始时间                                time(context.window().getStart()),                                // 当前窗口的结束时间                                time(context.window().getEnd()),                                // 当前key在当前窗口内元素总数                                count);                        // 发射到下游算子                        collector.collect(value);                    }                });        // 打印结果,通过分析打印信息,检查ProcessWindowFunction中可以处理所有key的整个窗口的数据        mainDataStream.print();        env.execute("processfunction demo : processallwindowfunction");    }    public static String time(long timeStamp) {        return new SimpleDateFormat("hh:mm:ss").format(new Date(timeStamp));    }}
  • 关于ProcessAllWindowFunctionDemo,有几点需要注意:
  1. 滚动窗口设置用timeWindowAll方法;
  2. ProcessAllWindowFunction的匿名子类的process方法中,context.window().getStart()方法可以取得当前窗口的起始时间,getEnd()方法可以取得当前窗口的结束时间;
  • 编码结束,执行ProcessAllWindowFunctionDemo类验证数据,如下图,检查其中一个窗口的元素详情和ProcessAllWindowFunction执行结果,可见符合预期:
7f661650dbb7a0b58c1c9f1541bf3bf2.png
ProcessAllWindowFunction已经了解,接下来尝试ProcessWindowFunction;

如何实战ProcessWindowFunction

接下来通过以下方式验证ProcessWindowFunction功能:

  1. 每隔1秒发出一个Tuple2对象,对象的f0字段在aaa和bbb之间变化,f1字段固定为1;
  2. 以f0字段为key进行分区;
  3. 分区后的数据进入5秒的滚动窗口;
  4. 自定义ProcessWindowFunction扩展类,功能之一是统计每个key在每个窗口内元素的数量,将统计结果发给下游算子;
  5. 功能之二是在更新当前key的元素总量,然后在状态后端(backend)保存,这是验证KeyedStream在处理函数中的状态读写能力;
  6. 下游算子将统计结果打印出来;
  7. 核对发出的数据和统计信息(每个窗口的和总共的分别核对),看是否一致;

开始编码

  • 新建ProcessWindowFunctionDemo.java:
package com.bolingcavalry.processwindowfunction;import org.apache.flink.api.common.state.ValueState;import org.apache.flink.api.common.state.ValueStateDescriptor;import org.apache.flink.api.java.tuple.Tuple2;import org.apache.flink.configuration.Configuration;import org.apache.flink.streaming.api.TimeCharacteristic;import org.apache.flink.streaming.api.datastream.DataStream;import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;import org.apache.flink.streaming.api.functions.source.SourceFunction;import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;import org.apache.flink.streaming.api.windowing.time.Time;import org.apache.flink.streaming.api.windowing.windows.TimeWindow;import org.apache.flink.util.Collector;import java.text.SimpleDateFormat;import java.util.Date;public class ProcessWindowFunctionDemo {    public static void main(String[] args) throws Exception {        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();        // 使用事件时间        env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime);        // 并行度为1        env.setParallelism(1);        // 设置数据源,一共三个元素        DataStream> dataStream = env.addSource(new SourceFunction>() {            @Override            public void run(SourceContext> ctx) throws Exception {                int aaaNum = 0;                int bbbNum = 0;                for(int i=1; i(name, 1), timeStamp);                    // 每发射一次就延时1秒                    Thread.sleep(1000);                }            }            @Override            public void cancel() {            }        });        // 将数据用5秒的滚动窗口做划分,再用ProcessWindowFunction        SingleOutputStreamOperator mainDataStream = dataStream                // 以Tuple2的f0字段作为key,本例中实际上key只有aaa和bbb两种                .keyBy(value -> value.f0)                // 5秒一次的滚动窗口                .timeWindow(Time.seconds(5))                // 统计每个key当前窗口内的元素数量,然后把key、数量、窗口起止时间整理成字符串发送给下游算子                .process(new ProcessWindowFunction, String, String, TimeWindow>() {                    // 自定义状态                    private ValueState state;                    @Override                    public void open(Configuration parameters) throws Exception {                        // 初始化状态,name是myState                        state = getRuntimeContext().getState(new ValueStateDescriptor<>("myState", KeyCount.class));                    }                    @Override                    public void process(String s, Context context, Iterable> iterable, Collector collector) throws Exception {                        // 从backend取得当前单词的myState状态                        KeyCount current = state.value();                        // 如果myState还从未没有赋值过,就在此初始化                        if (current == null) {                            current = new KeyCount();                            current.key = s;                            current.count = 0;                        }                        int count = 0;                        // iterable可以访问该key当前窗口内的所有数据,                        // 这里简单处理,只统计了元素数量                        for (Tuple2 tuple2 : iterable) {                            count++;                        }                        // 更新当前key的元素总数                        current.count += count;                        // 更新状态到backend                        state.update(current);                        // 将当前key及其窗口的元素数量,还有窗口的起止时间整理成字符串                        String value = String.format("window, %s, %s - %s, %d,    total : %d",                                // 当前key                                s,                                // 当前窗口的起始时间                                time(context.window().getStart()),                                // 当前窗口的结束时间                                time(context.window().getEnd()),                                // 当前key在当前窗口内元素总数                                count,                                // 当前key出现的总数                                current.count);                        // 发射到下游算子                        collector.collect(value);                    }                });        // 打印结果,通过分析打印信息,检查ProcessWindowFunction中可以处理所有key的整个窗口的数据        mainDataStream.print();        env.execute("processfunction demo : processwindowfunction");    }    public static String time(long timeStamp) {        return new SimpleDateFormat("hh:mm:ss").format(new Date(timeStamp));    }    static class KeyCount {        /**         * 分区key         */        public String key;        /**         * 元素总数         */        public long count;    }}
  • 上述代码有几处需要关注:
  1. 静态类KeyCount.java,是用来保存每个key元素总数的数据结构;
  2. timeWindow方法设置了市场为5秒的滚动窗口;
  3. 每个Tuple2元素以f0为key进行分区;
  4. open方法对名为myState的自定义状态进行注册;
  5. process方法中,state.value()取得当前key的状态,tate.update(current)更新当前key的状态;
  • 接下来运行ProcessWindowFunctionDemo类检查数据,如下图,process方法内,对窗口内元素的统计和数据源打印的一致,并且从backend取得的总数在累加后和数据源的统计信息也一致:
5e37bef90da7ac87940d419b93c3116e.png

至此,处理函数中窗口处理相关的实战已经完成,如果您也在学习Flink的处理函数,希望本文能给您一些参考;

欢迎关注我的公众号:程序员欣宸

f0cc1dd418f48d025bedeb8ae8b799a7.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值