本文是《Flink处理函数实战》系列的第三篇,内容是学习以下两个窗口相关的处理函数:
- ProcessAllWindowFunction:处理每个窗口内的所有元素;
- ProcessWindowFunction:处理指定key的每个窗口内的所有元素;
前文链接
- 《深入了解ProcessFunction的状态操作(Flink-1.10)》
- 《Flink处理函数实战之一:ProcessFunction类》
- 《Flink处理函数实战之二:KeyedProcessFunction类》
关于ProcessAllWindowFunction
- ProcessAllWindowFunction和《Flink处理函数实战之一:ProcessFunction类》中的ProcessFunction类相似,都是用来对上游过来的元素做处理,不过ProcessFunction是每个元素执行一次processElement方法,ProcessAllWindowFunction是每个窗口执行一次process方法(方法内可以遍历该窗口内的所有元素);
- 用类图对比可以更形象的认识差别,下图左侧是ProcessFunction,右侧是ProcessAllWindowFunction:
关于ProcessWindowFunction
ProcessWindowFunction和KeyedProcessFunction类似, 都是处理分区的数据,不过KeyedProcessFunction是每个元素执行一次processElement方法,而ProcessWindowFunction是每个窗口执行一次process方法(方法内可以遍历该key当前窗口内的所有元素);用类图对比可以更形象的认识差别,下图左侧是KeyedProcessFunction,右侧是ProcessWindowFunction:- 另外还一个差异:ProcessWindowFunction.process方法的入参就有分区的key值,而KeyedProcessFunction.processElement方法的入参没有这个参数,而是需要Context.getCurrentKey()才能取到分区的key值;
注意事项:
窗口处理函数的process方法,以ProcessAllWindowFunction为例,如下图红框所示,其入参可以遍历当前窗口内的所有元素,这意味着当前窗口的所有元素都保存在堆内存中,所以请在设计阶段就严格控制窗口内元素的内存使用量,避免耗尽TaskManager节点的堆内存:
接下来通过实战学习ProcessAllWindowFunction和ProcessWindowFunction;
版本信息
- 开发环境操作系统:MacBook Pro 13寸, macOS Catalina 10.15.4
- 开发工具:IntelliJ IDEA 2019.3.2 (Ultimate Edition)
- JDK:1.8.0_121
- Maven:3.3.9
- Flink:1.9.2
源码下载
如果您不想写代码,整个系列的源码可在GitHub下载到,地址和链接信息如下表所示(https://github.com/zq2599/blog_demos):
这个git项目中有多个文件夹,本章的应用在flinkstudy文件夹下,如下图红框所示:
如何实战ProcessAllWindowFunction
接下来通过以下方式验证ProcessAllWindowFunction功能:
- 每隔1秒发出一个Tuple2对象,对象的f0字段在aaa和bbb之间变化,f1字段固定为1;
- 设置5秒的滚动窗口;
- 自定义ProcessAllWindowFunction扩展类,功能是统计每个窗口内元素的数量,将统计结果发给下游算子;
- 下游算子将统计结果打印出来;
- 核对发出的数据和统计信息,看是否一致;
开始编码
- 继续使用《Flink处理函数实战之一:ProcessFunction类》一文中创建的工程flinkstudy;
- 新建ProcessAllWindowFunctionDemo类,如下:
package com.bolingcavalry.processwindowfunction;import org.apache.flink.api.java.tuple.Tuple2;import org.apache.flink.streaming.api.TimeCharacteristic;import org.apache.flink.streaming.api.datastream.DataStream;import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;import org.apache.flink.streaming.api.functions.source.SourceFunction;import org.apache.flink.streaming.api.functions.windowing.ProcessAllWindowFunction;import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;import org.apache.flink.streaming.api.windowing.time.Time;import org.apache.flink.streaming.api.windowing.windows.TimeWindow;import org.apache.flink.util.Collector;import java.text.SimpleDateFormat;import java.util.Date;public class ProcessAllWindowFunctionDemo { public static void main(String[] args) throws Exception { final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // 使用事件时间 env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime); // 并行度为1 env.setParallelism(1); // 设置数据源,一共三个元素 DataStream> dataStream = env.addSource(new SourceFunction>() { @Override public void run(SourceContext> ctx) throws Exception { for(int i=1; i(name, 1), timeStamp); // 每发射一次就延时1秒 Thread.sleep(1000); } } @Override public void cancel() { } }); // 将数据用5秒的滚动窗口做划分,再用ProcessAllWindowFunction SingleOutputStreamOperator mainDataStream = dataStream // 5秒一次的滚动窗口 .timeWindowAll(Time.seconds(5)) // 统计当前窗口内的元素数量,然后把数量、窗口起止时间整理成字符串发送给下游算子 .process(new ProcessAllWindowFunction, String, TimeWindow>() { @Override public void process(Context context, Iterable> iterable, Collector collector) throws Exception { int count = 0; // iterable可以访问当前窗口内的所有数据, // 这里简单处理,只统计了元素数量 for (Tuple2 tuple2 : iterable) { count++; } // 将当前窗口的起止时间和元素数量整理成字符串 String value = String.format("window, %s - %s, %d", // 当前窗口的起始时间 time(context.window().getStart()), // 当前窗口的结束时间 time(context.window().getEnd()), // 当前key在当前窗口内元素总数 count); // 发射到下游算子 collector.collect(value); } }); // 打印结果,通过分析打印信息,检查ProcessWindowFunction中可以处理所有key的整个窗口的数据 mainDataStream.print(); env.execute("processfunction demo : processallwindowfunction"); } public static String time(long timeStamp) { return new SimpleDateFormat("hh:mm:ss").format(new Date(timeStamp)); }}
- 关于ProcessAllWindowFunctionDemo,有几点需要注意:
- 滚动窗口设置用timeWindowAll方法;
- ProcessAllWindowFunction的匿名子类的process方法中,context.window().getStart()方法可以取得当前窗口的起始时间,getEnd()方法可以取得当前窗口的结束时间;
- 编码结束,执行ProcessAllWindowFunctionDemo类验证数据,如下图,检查其中一个窗口的元素详情和ProcessAllWindowFunction执行结果,可见符合预期:
如何实战ProcessWindowFunction
接下来通过以下方式验证ProcessWindowFunction功能:
- 每隔1秒发出一个Tuple2对象,对象的f0字段在aaa和bbb之间变化,f1字段固定为1;
- 以f0字段为key进行分区;
- 分区后的数据进入5秒的滚动窗口;
- 自定义ProcessWindowFunction扩展类,功能之一是统计每个key在每个窗口内元素的数量,将统计结果发给下游算子;
- 功能之二是在更新当前key的元素总量,然后在状态后端(backend)保存,这是验证KeyedStream在处理函数中的状态读写能力;
- 下游算子将统计结果打印出来;
- 核对发出的数据和统计信息(每个窗口的和总共的分别核对),看是否一致;
开始编码
- 新建ProcessWindowFunctionDemo.java:
package com.bolingcavalry.processwindowfunction;import org.apache.flink.api.common.state.ValueState;import org.apache.flink.api.common.state.ValueStateDescriptor;import org.apache.flink.api.java.tuple.Tuple2;import org.apache.flink.configuration.Configuration;import org.apache.flink.streaming.api.TimeCharacteristic;import org.apache.flink.streaming.api.datastream.DataStream;import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;import org.apache.flink.streaming.api.functions.source.SourceFunction;import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;import org.apache.flink.streaming.api.windowing.time.Time;import org.apache.flink.streaming.api.windowing.windows.TimeWindow;import org.apache.flink.util.Collector;import java.text.SimpleDateFormat;import java.util.Date;public class ProcessWindowFunctionDemo { public static void main(String[] args) throws Exception { final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // 使用事件时间 env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime); // 并行度为1 env.setParallelism(1); // 设置数据源,一共三个元素 DataStream> dataStream = env.addSource(new SourceFunction>() { @Override public void run(SourceContext> ctx) throws Exception { int aaaNum = 0; int bbbNum = 0; for(int i=1; i(name, 1), timeStamp); // 每发射一次就延时1秒 Thread.sleep(1000); } } @Override public void cancel() { } }); // 将数据用5秒的滚动窗口做划分,再用ProcessWindowFunction SingleOutputStreamOperator mainDataStream = dataStream // 以Tuple2的f0字段作为key,本例中实际上key只有aaa和bbb两种 .keyBy(value -> value.f0) // 5秒一次的滚动窗口 .timeWindow(Time.seconds(5)) // 统计每个key当前窗口内的元素数量,然后把key、数量、窗口起止时间整理成字符串发送给下游算子 .process(new ProcessWindowFunction, String, String, TimeWindow>() { // 自定义状态 private ValueState state; @Override public void open(Configuration parameters) throws Exception { // 初始化状态,name是myState state = getRuntimeContext().getState(new ValueStateDescriptor<>("myState", KeyCount.class)); } @Override public void process(String s, Context context, Iterable> iterable, Collector collector) throws Exception { // 从backend取得当前单词的myState状态 KeyCount current = state.value(); // 如果myState还从未没有赋值过,就在此初始化 if (current == null) { current = new KeyCount(); current.key = s; current.count = 0; } int count = 0; // iterable可以访问该key当前窗口内的所有数据, // 这里简单处理,只统计了元素数量 for (Tuple2 tuple2 : iterable) { count++; } // 更新当前key的元素总数 current.count += count; // 更新状态到backend state.update(current); // 将当前key及其窗口的元素数量,还有窗口的起止时间整理成字符串 String value = String.format("window, %s, %s - %s, %d, total : %d", // 当前key s, // 当前窗口的起始时间 time(context.window().getStart()), // 当前窗口的结束时间 time(context.window().getEnd()), // 当前key在当前窗口内元素总数 count, // 当前key出现的总数 current.count); // 发射到下游算子 collector.collect(value); } }); // 打印结果,通过分析打印信息,检查ProcessWindowFunction中可以处理所有key的整个窗口的数据 mainDataStream.print(); env.execute("processfunction demo : processwindowfunction"); } public static String time(long timeStamp) { return new SimpleDateFormat("hh:mm:ss").format(new Date(timeStamp)); } static class KeyCount { /** * 分区key */ public String key; /** * 元素总数 */ public long count; }}
- 上述代码有几处需要关注:
- 静态类KeyCount.java,是用来保存每个key元素总数的数据结构;
- timeWindow方法设置了市场为5秒的滚动窗口;
- 每个Tuple2元素以f0为key进行分区;
- open方法对名为myState的自定义状态进行注册;
- process方法中,state.value()取得当前key的状态,tate.update(current)更新当前key的状态;
- 接下来运行ProcessWindowFunctionDemo类检查数据,如下图,process方法内,对窗口内元素的统计和数据源打印的一致,并且从backend取得的总数在累加后和数据源的统计信息也一致:
至此,处理函数中窗口处理相关的实战已经完成,如果您也在学习Flink的处理函数,希望本文能给您一些参考;