我们把没有给出具体解析式的函数称为抽象函数。由于这类问题可以全面考查学生对函数概念和性质的理解,同时抽象函数问题又将函数的定义域,值域,单调性,奇偶性,周期性和图象集于一身,所以在高考中不断出现,今天我们就这些问题进行综合整理复习,希望可以对你有一点点的帮助。


定义域问题



抽象函数的定义域问题对于高一学生来说,算一个难点,理解上只要有一点不到位基本就做不对。但是这类问题又不是真正的难题,要解决好这类问题,只要理解这三个点就再也不会出错了:
【练一练】

解析式问题



在网上看到很多解析,直接求导,代入数据求斜率,但是在这个题目中并没有说函数可导,所以为了严谨,还是先求解析式,判断可导以后再求导比较保险.
解析【练一练】

单调性问题



证明函数单调性四步曲:
①取值:在给定区间内任取x1,x2,且规定大小
②作差:f(x1)-f(x2)
③定号:通过变形确定f(x1)-f(x2)的符号
④定论:下结论.
解析【练一练】
(答案在后面的题中)

奇偶性问题



证明函数的奇偶性,没有图象只能通过定义法,实际上就是要证明:f(x)+f(-x)=0即可。
解析【练一练】

周期性问题



若函数f(x)是奇函数,其图象关于直线x=a对称,则其周期为4a;
解析【练一练】
【答案】D.
推荐阅读1有你就有诗和远方2风中凌乱的外接球 有此公式横着走3风中偶遇她 裂项不再迷4一片枫叶一曲相思引入职场5数学也可以有诗和远方