对抽象函数求导_遍地开花的抽象函数你掌握了吗?

本文探讨了抽象函数在高考数学中的重要性,重点梳理了定义域、解析式、单调性、奇偶性和周期性等问题。针对抽象函数的求导,强调在未明确可导性的情况下应先判断可导性再进行求导。通过举例和练习,帮助读者理解和掌握相关概念。
摘要由CSDN通过智能技术生成

86d5698248979ccf3cd6ce631560df52.gif

我们把没有给出具体解析式的函数称为抽象函数。由于这类问题可以全面考查学生对函数概念和性质的理解,同时抽象函数问题又将函数的定义域,值域,单调性,奇偶性,周期性和图象集于一身,所以在高考中不断出现,今天我们就这些问题进行综合整理复习,希望可以对你有一点点的帮助。

792320b1d60157b2ceeba69e1c539bd4.png 40b477c12a66e3274ac2cdb16cc0fba8.png

定义域问题

ea7a7e47ea4f8f658f76c6047002089f.png

188c295567eea9a5bcc5633a3ff8971d.png

10c48a3843cb1aec0c1896838493e334.gif cefa6aca666138842a6828b3c4516ff3.png

抽象函数的定义域问题对于高一学生来说,算一个难点,理解上只要有一点不到位基本就做不对。但是这类问题又不是真正的难题,要解决好这类问题,只要理解这三个点就再也不会出错了:

e9fda3bc929ee4febb51c10e2b0365ae.png

解析

06e0b171b1f62b3de5580c680aa02316.png

【练一练】

d1f6527a64da854ce584093cc8094187.png

40b477c12a66e3274ac2cdb16cc0fba8.png

解析式问题

ea7a7e47ea4f8f658f76c6047002089f.png

7995c9e2a35c1d1b1ee8ef7413a8285b.png

10c48a3843cb1aec0c1896838493e334.gif cefa6aca666138842a6828b3c4516ff3.png

在网上看到很多解析,直接求导,代入数据求斜率,但是在这个题目中并没有说函数可导,所以为了严谨,还是先求解析式,判断可导以后再求导比较保险.

解析

e86467bf6b7907167ded874bb5ed07de.png

【练一练】

a38afd25b4aee1d3af29debbc455123f.png

40b477c12a66e3274ac2cdb16cc0fba8.png

单调性问题

ea7a7e47ea4f8f658f76c6047002089f.png

82f12261a7d8affec5ba6753b77d40b9.png

10c48a3843cb1aec0c1896838493e334.gif cefa6aca666138842a6828b3c4516ff3.png

证明函数单调性四步曲:

①取值:在给定区间内任取x1,x2,且规定大小

②作差:f(x1)-f(x2)

③定号:通过变形确定f(x1)-f(x2)的符号

④定论:下结论.

解析

3483632f771c7b597117466b22a8711d.png

2b2a070e7b6b56e7a33eef1739397849.png

【练一练】

4ce97c59d7da56108c5eb24298d533d1.png

(答案在后面的题中)

40b477c12a66e3274ac2cdb16cc0fba8.png

奇偶性问题

ea7a7e47ea4f8f658f76c6047002089f.png

c57421c15f4f1d55a044d4527af35841.png

10c48a3843cb1aec0c1896838493e334.gif cefa6aca666138842a6828b3c4516ff3.png

证明函数的奇偶性,没有图象只能通过定义法,实际上就是要证明:f(x)+f(-x)=0即可。

解析

8ba0705ffca0a0099f0df1079bbd4467.png

【练一练】

c6dd9abd61afc4c3df7e383c0e236ac1.png

解析

18560e431579ded1e3447d96b741af1c.png

5a6fc34a0c5d4067a027ae641695e34e.png

bedfed41f0bea0c7fdf76498e0d4ba67.png

40b477c12a66e3274ac2cdb16cc0fba8.png

周期性问题

ea7a7e47ea4f8f658f76c6047002089f.png

ee335cd5d5ea14548fd55f81e5a2b340.png

10c48a3843cb1aec0c1896838493e334.gif cefa6aca666138842a6828b3c4516ff3.png

若函数f(x)是奇函数,其图象关于直线x=a对称,则其周期为4a;

解析

566fdae92f96e8e254849606945cd055.png

【练一练】

7b88d8979fe4649c38e0fb3cec359412.png

【答案】D.

推荐阅读1有你就有诗和远方2风中凌乱的外接球  有此公式横着走3风中偶遇她  裂项不再迷4一片枫叶一曲相思引入职场5数学也可以有诗和远方
在MATLAB中,抽象函数是指不能直接调用的函数,而是需要通过继承和重写来实现具体功能的函数抽象函数通常用于定义接口或基类,以便其他类可以继承并实现自己的功能。 如果你想要在MATLAB中求解抽象函数导数,你需要先创建一个具体的子类,并在子类中实现该抽象函数。然后,你可以使用MATLAB提供的符号计算工具箱来求解导数。 以下是一个示例代码,演示了如何在MATLAB中求解抽象函数导数: ```matlab % 创建一个抽象函数的基类 classdef AbstractFunction < handle methods (Abstract) % 定义抽象函数 y = evaluate(obj, x) end end % 创建一个具体的子类,并实现抽象函数 classdef ConcreteFunction < AbstractFunction methods function y = evaluate(obj, x) % 实现具体的函数功能 y = x^2 + 2*x + 1; end end end % 创建子类对象 func = ConcreteFunction(); % 使用符号计算工具箱求解导数 syms x; f = func.evaluate(x); df = diff(f, x); % 输出导数结果 disp(df); ``` 在上述代码中,我们首先创建了一个抽象函数的基类`AbstractFunction`,其中定义了一个抽象方法`evaluate`。然后,我们创建了一个具体的子类`ConcreteFunction`,并在子类中实现了`evaluate`方法。接下来,我们创建了子类对象`func`,并使用符号计算工具箱中的`diff`函数求解了函数导数。最后,我们输出了导数的结果。 希望以上信息对你有所帮助!如果你还有其他问题,请继续提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值