介绍
在工作中,我们用于捕捉性能问题最常用的就是打开慢查询,定位执行效率差的SQL,那么当我们定位到一个SQL以后还不算完事,我们还需要知道该SQL的执行计划,比如是全表扫描,还是索引扫描,这些都需要通过EXPLAIN去完成。EXPLAIN命令是查看优化器如何决定执行查询的主要方法。可以帮助我们深入了解MySQL的基于开销的优化器,还可以获得很多可能被优化器考虑到的访问策略的细节,以及当运行SQL语句时哪种策略预计会被优化器采用。
建议先看一下这篇分享MySQL索引为什么要用B+树实现?,这样你就能更好的理解什么时候需要回表查询,什么时候不需要,explain用法很简单,只需要在执行的select语句前加上explain即可
explain select * from teacher
下面来具体分析,准备的数据如下
course表
CREATE TABLE `course` ( `cid` int(3) NOT NULL, `cname` varchar(20) NOT NULL, `tid` int(3) NOT NULL, PRIMARY KEY (`cid`) USING BTREE) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
teacher表
CREATE TABLE `teacher` ( `tid` int(3) NOT NULL, `tname` varchar(20) NOT NULL, `tcid` int(3) NOT NULL, PRIMARY KEY (`tid`)) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
teacher_card表
CREATE TABLE `teacher_card` ( `tcid` int(3) NOT NULL, `tcdesc` varchar(20) NOT NULL, PRIMARY KEY (`tcid`)) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
id
我们来查询课程编号为2或者教师证编号为3的老师信息
SELECT t.* FROM course c, teacher t, teacher_card tc WHERE c.tid = t.tid AND t.tcid = tc.tcid AND ( c.cid = 2 OR t.tcid = 3 )
explain上述SQL后,如下所示
id值相同,从上往下顺序执行
为什么要先从t表中读取数据,然后和tc表做表联结,最后再和c表做表联结呢?(上面的SQL可以改写为join on的形式,执行效果一样)
我们写的SQL会被优化器优化,MySQL会按照小结果集驱动大结果集的方式进行表联结,表联结即对2个表做笛卡尔积,所以联结的顺序是t(3)-tc(3)-c(4),括号中为个数。如果表t表的个数为5,则联结的顺序为tc(3)-c(4)-t(5),注意括号里的数字不是表的数量,是结果集的数量
如果查询课程编号为2的老师信息
SELECT t.* FROM course c, teacher t, teacher_card tc WHERE c.tid = t.tid AND t.tcid = tc.tcid AND c.cid = 2
因为可以确定c的结果集最小,只有一个记录,因此联结顺序为c(1)-t(3)-tc(3)
查询教授SQL课程的老师的描述
SELECT tc.tcdesc FROM teacher_card tc WHERE tc.tcid = (SELECT t.tcid FROM teacher t WHERE t.tid = ( SELECT c.tid FROM course c WHERE c.cname = "sql" ) );
这个SQL是先查询c表,再查询t表,最后查询tc表,执行explain看一下
id值不同,id值越大,越优先执行。将上述SQL改为如下形式
SELECT tc.tcdesc FROM teacher t, teacher_card tc WHERE tc.tcid = t.tcid AND t.tid = ( SELECT c.tid FROM course c WHERE c.cname = "sql" )
id值有相同,又有不同,id值越大越优先,id值相同,从上往下顺序执行
select_type
SIMPLE:查询不包含子查询和UNION
SELECT * FROM teacher
PRIMARY:查询有任何复杂的子部分,则外层部分标记为PRIMARY
SUBQUERY:包含在SELECT列表中的子查询中的SELECT(换句话说,不在FROM子句中)标记为SUBQUERY
查询教授SQL课程的老师的描述
SELECT tc.tcdesc FROM teacher_card tc WHERE tc.tcid = (SELECT t.tcid FROM teacher t WHERE t.tid = ( SELECT c.tid FROM course c WHERE c.cname = "sql" ) );
DERIVED:DERIVED值用来表示包含在FROM子句的子查询中的SELECT,MySQL会递归执行并将结果放到一个临时表中。服务器内部称其“派生表”,因为该临时表是从子查询中派生来的
SELECT cr.cname FROM ( SELECT * FROM course WHERE tid IN ( 1, 2 ) ) cr
id为1的table表名为,表示是一张派生表,派生表从id为2的执行过程中来
UNION:在UNION中的第二个和随后 的SELECT被标记为UNION。第一个SELECT被标记就好像它以部分外查询来执行。这就是下面第一个例子中在UNION中的第一个SELECT显示为PRIMARY的原因。如果UNION被FROM子句中的子查询包含,那么它的第一个SELECT会被标记为DERIVED,即下面的第二个例子
UNION RESULT:用来从UNION的匿名临时表检索结果的SELECT被标记为UNION RESULT
SELECT * FROM course WHERE tid = 1 UNION SELECT * FROM course WHERE tid = 2
SELECT cr.cname FROM ( SELECT * FROM course WHERE tid = 1 UNION SELECT * FROM course WHERE tid = 2 ) cr
type
索引类型, 要对type进行优化的前提是有索引。type类型有很多,这里不一一介绍,值介绍几个常用的,性能依次从最优到最差
const,system>eq_ref>>ref>range>index>all
其中system,const只是理想情况,实际能达到ref>range
system:只有一条数据的系统表,或派生表只有一条数据的子查询
SELECT a.tname FROM ( SELECT * FROM teacher t WHERE t.tid = 1 ) a
const:仅仅能查到一条数据的SQL,用于Primary key或unique索引。如果只是能查到一条数据,但是条件列上没有Primary key或unique索引,则不是const
SELECT * FROM teacher t WHERE t.tid = 1
假如说去掉tid上的主键(只是针对这个例子临时更改),执行下面的语句,结果如下
SELECT * FROM teacher t WHERE t.tid = 1
此时type为ALL,验证了我们的想法,即虽然结果只有一条,但条件列上没有Primary key或unique索引,也不是const
eq_ref:唯一性索引,对于每个键的查询,返回匹配唯一行数据(有且只有一个,不能多,不能0),常见于唯一索引和主键索引,不是必须的有索引,我下面句的例子中teacher表的tcid字段就没有加任何索引,当然是我数据太简单的问题,才能在不建索引的情况下出现eq_ref
SELECT t.tcid FROM teacher t, teacher_card tc WHERE t.tcid = tc.tcid
来看看此时表的数据
teacher表
teacher_card表
此时对于teacher表的tcid这个键,都会返回唯一条数据,所以type为eq_ref,假如说将teacher表增加一条数据(只是针对这个例子临时更改),teacher_card表不变,数据如下
teacher表
重新执行上述SQL
SELECT t.tcid FROM teacher t, teacher_card tc WHERE t.tcid = tc.tcid
可以看到type类型变为了ALL,因为对于teacher表,4这个键,返回了0条数据,不是每个键值都返回了一条数据
上面的例子teacher_card都保持了不变,是为了验证的严密性,如果给teacher_card表增加数据再执行eq_ref的2个例子,其实是没有影响的,因为eq_ref针对的是teacher的键都能返回唯一行数据
ref:非唯一性索引,对于每个索引键的查询,返回匹配所有行(0,多)
修改表为如下(只是针对这个例子临时更改),出现了一个同名的老师张三,并且在teacher表的name列加上普通索引,演示一下匹配行有多个的情况
teacher表
SELECT * FROM teacher WHERE tname = "张三"
当查询姓名为张三的老师时,会返回2条数据
range:检索指定范围的行,where后面是一个范围查询(between,>,=,in有时候会失效,从而转为无索引ALL)
SELECT * FROM teacher WHERE tid < 3
index:这个跟全表扫描一样,只是MySQL扫描表时按索引次序进行而不是行
对teacher表的name字段建索引(只是针对这个例子临时更改)
SELECT tname FROM teacher
对tname建立索引,当我们只查询tid时,它的值已经在B+树的叶子节点上了,不需要回表查询,从索引中就可以拿到,因为非聚集索引,叶子节点存放索引键值,以及该索引键值指向的主键
接着,同时查tname(tname上有索引),tcid(tcid上没有索引)
SELECT tname, tcid FROM teacher
可以看到type为ALL,因为从tname索引中拿不到tcid的数据,只能通过全表扫描
现在我们想同时查询tname和tcid,不想通过回表,只想通过索引表拿到数据,应该怎么建索引呢?现在我们可以肯定的是,只对tname加索引,或者只对tcid加索引肯定是不行的,那么在tname和tcid上都分别加索引呢(只是针对这个例子临时更改)?
执行如下sql
SELECT tname, tcid FROM teacher
可以看到是ALL,针对这种情况我们得对tname和tcid建联合索引,因为只有联合索引才能拿到tname和tcid的值,还不用回表
再次执行
SELECT tname, tcid FROM teacher
key使用了联合索引
all:全表扫描
SELECT * FROM teacher WHERE tcid = 1
possible_keys
可能用到的索引,是一种预测,不准
key
实际使用到的索引
key_len
索引的长度,用于判断联合索引是否被完全使用,单开一文来讲
ref
列出是通过常量(const),还是某个表的某个字段(如果是join)来过滤(通过key)
先对teacher表的tname字段和course表的tid字段增加索引
SELECT c.cid, t.tname FROM course c, teacher t WHERE c.tid = t.tid AND t.tname = "张三"
第一个为const表示常量,即张三,第二个为test2.t.tid,表示couse表引用的是test2库中的t(teacher)表的tid字段
rows
这一列是MySQL估计为了找到所需的行而要读取的行数
Extra
Using index:所需要的数据,只需要在索引即可全部获得,而不需要再到表中取数据
Using where:如果我们不是读取表的所有数据,或者不是仅仅通过索引就可以获取所有需要的数据,则会出现Using where信息。
Using index和Using where前面已经有例子,当出现索引覆盖时,会显示Using index,性能得到了提升,出现Using temporary和Using filesort说明性能损耗比较大
Using temporary:当MySQL某些操作中必须使用临时表时,在Extra信息中就会出现Using temporary。主要常见于GROUP BY和ORDER BY等操作中
Using filesort:这意味着MySQL会对结果使用一个外部索引排序,而不是按索引次序从表里读取行
对teacher表的name字段建索引(只是针对这个例子临时更改),
SELECT * FROM teacher WHERE tname = "张三" ORDER BY tname
SELECT * FROM teacher WHERE tname = "张三" ORDER BY tcid
把explain的key_len参数分享完,建立如下的表,其中name列和address列都建立了索引
CREATE TABLE `teacher` ( `id` int(10) NOT NULL, `name` char(20) NOT NULL, `address` varchar(100) DEFAULT NULL, PRIMARY KEY (`id`), KEY `idx_name` (`name`), KEY `idx_addr` (`address`)) ENGINE=InnoDB DEFAULT CHARSET=utf8;
执行如下命令
explain select * from teacher where name = "张三"
explain select * from teacher where address = "北京"
问题来喽,这些key_len是怎么算出来的呢?
key_len
key_len表示索引使用的字节数,根据这个值,就可以判断索引使用情况,特别是在组合索引的时候,判断所有的索引字段是否都被查询用到
字符串类型
char和varchar跟字符编码也有密切的联系
latin1占用一个字节,gbk占用2个字节,utf8占用3个字节,utf8mb4占用4个字节(不同字符编码占用的存储空间不同)
char和varchar跟字符编码也有密切的联系
latin1占用一个字节,gbk占用2个字节,utf8占用3个字节,utf8mb4占用4个字节(不同字符编码占用的存储空间不同)
字符类型-索引字段为char类型+不可为Null时
char(n)=n*(utf8mb4=4,utf8=3,gbk=2,latin1=1)
所以上面第一个列子(查询name=张三)的key_len为20*3=60
下文中为了描述方便,编码类型默认为utf8
字符类型-索引字段为char类型+允许为Null时
char(n)=n*3+1(允许null,是否为空的标记)
字符类型-索引字段为varchar类型+不可为Null时
varchar(n)=n*3+2(变长列,记录当前数据存了多少)
字符类型-索引字段为varchar类型+允许为Null时
varchar(n)=n*3+1(允许null)+2(变长列)
所以上面第二个例子(查询住址=北京)的key_len为100*3+1+2=303
整数/浮点数/时间类型的索引长度
Not Null=字段本身的长度
Null=字段本身的长度+1
再回头看看前面的例子,是不是很容易就理解了呢?整数时间类型的小编就不再举例,自己写个例子就很容易就理解了