ARMA(auto regression moving average)模型的全称是自回归移动平均模型,是目前最常用的拟合平稳序列的模型。它又可以细分为AR模型、MA模型和ARMA模型三大类,其中AR模型和MA模型实际上是ARMA模型的特例。本文以建立ARAM模型为例,学习如何使用Python进行时间序列分析。
下面针对Temperature.csv的差分序列建立ARAM模型,并对未来数据进行预测。数据集为1880-1985年全球气表平均温度改变值序列,总共106条记录。数据包含两个维度:年份和温度,数据格式如图1所示:

图1 部分训练样本示例


自相关系数 | 偏自相关系数 | 模型定阶 |
拖尾 | p阶截尾 | AR(p)模型 |
q阶截尾 | 拖尾 | MA(q)模型 |
拖尾 | 拖尾 | ARMA(p,q)模型 |