arma模型_ARMA模型建模

本文介绍了如何使用Python对全球气表平均温度改变值序列建立ARMA模型。通过时序图、一阶差分、白噪声检验、单位根检验以及自相关图和偏相关图的绘制,最终选择ARMA(1,1)模型进行预测。" 112951093,10546038,Python Socket编程与多线程并发实践,"['Python编程', '网络编程', '并发处理', '线程管理', 'Socket通信']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ARMA(auto regression moving average)模型的全称是自回归移动平均模型,是目前最常用的拟合平稳序列的模型。它又可以细分为AR模型、MA模型和ARMA模型三大类,其中AR模型和MA模型实际上是ARMA模型的特例。本文以建立ARAM模型为例,学习如何使用Python进行时间序列分析。

下面针对Temperature.csv的差分序列建立ARAM模型,并对未来数据进行预测。数据集为1880-1985年全球气表平均温度改变值序列,总共106条记录。数据包含两个维度:年份和温度,数据格式如图1所示:

b8e8551d60300b5c343c8ad21a22f8cc.png

图1 部分训练样本示例

d7b63032c6124c3115e5c8273c3e48ca.png ARMA模型定阶原则 d7b63032c6124c3115e5c8273c3e48ca.png
自相关系数 偏自相关系数 模型定阶
拖尾 p阶截尾 AR(p)模型
q阶截尾 拖尾 MA(q)模型
拖尾 拖尾 ARMA(p,q)模型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值