python训练模型测试模型_python机器学习——使用scikit-learn训练感知机模型

这一篇我们将开始使用scikit-learn的API来实现模型并进行训练,这个包大大方便了我们的学习过程,其中包含了对常用算法的实现,并进行高度优化,以及含有数据预处理、调参和模型评估的很多方法。

我们来看一个之前看过的实例,不过这次我们使用sklearn来训练一个感知器模型,数据集还是Iris,使用其中两维度的特征,样本数据使用三个类别的全部150个样本

%matplotlib inline

import numpy as np

from sklearn import datasets

iris = datasets.load_iris()

X = iris.data[:, [2, 3]]

y = iris.target

np.unique(y)

array([0, 1, 2])

为了评估训练好的模型对新数据的预测能力,我们这里将Iris数据集分为训练集和测试集,这里我们通过调用trian_test_split方法来将数据集分为两部分,其中测试集占30%,训练集占70%

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)

我们再将特征进行缩放操作,这里调用StandardScaler来对特征进行标准化:

from sklearn.preprocessing import StandardScaler

sc = StandardScaler()

sc.fit(X_train)

X_train_std = sc.transform(X_train)

X_test_std = sc.transform(X_test)

新对象sc使用fit方法对数据集中每一维的特征计算出样本平均值和标准差,然后调用transform方法对数据集进行标准化,我们这里使用相同的标准化参数对待训练集和测试集。接下来我们训练一个感知器模型

from sklearn.linear_model import Perceptron

ppn = Perceptron(max_iter=40, eta0=0.1, random_state=0)

ppn.fit(X_train_std, y_train)

Perceptron(alpha=0.0001, class_weight=None, early_stopping=False, eta0=0.1,

fit_intercept=True, max_iter=40, n_iter_no_change=5, n_jobs=None,

penalty=None, random_state=0, shuffle=True, tol=0.001,

validation_fraction=0.1, verbose=0, warm_start=False)

y_pred = ppn.predict(X_test_std)

print('Misclassified samples: %d' % (y_test != y_pred).sum())

Misclassified samples: 5

可以看出测试集中有5个样本被分错类了,因此错误分类率是0.11,则分类准确率为1-0.11=0.89,我们也可以直接计算分类准确率:

from sklearn.metrics import accuracy_score

print('Accuracy: %.2f' % accuracy_score(y_test, y_pred))

Accuracy: 0.89

最后我们画出分界区域,这里我们将plot_decision_regions函数进行一些修改,使我们可以区分训练集和测试集的样本

from matplotlib.colors import ListedColormap

import matplotlib.pyplot as plt

def plot_decision_regions(X, y, classifier, test_idx=None, resolution=0.02):

# setup marker generator and color map

markers = ('s', 'x', 'o', '^', 'v')

colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')

cmap = ListedColormap(colors[:len(np.unique(y))])

# plot the decision surface

x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1

x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1

xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),

np.arange(x2_min, x2_max, resolution))

Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)

Z = Z.reshape(xx1.shape)

plt.contourf(xx1, xx2, Z, slpha=0.4, cmap=cmap)

plt.xlim(xx1.min(), xx1.max())

plt.ylim(xx2.min(), xx2.max())

# plot all samples

X_test, y_test = X[test_idx, :], y[test_idx]

for idx, cl in enumerate(np.unique(y)):

plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1], alpha=0.8,

c=cmap(idx), marker=markers[idx], label=cl)

# highlight test samples

if test_idx:

X_test, y_test = X[test_idx, :], y[test_idx]

plt.scatter(X_test[:, 0], X_test[:, 1], c='',alpha=1.0,

linewidth=1, marker='o', s=55, label='test set')

X_combined_std = np.vstack((X_train_std, X_test_std))

y_combined = np.hstack((y_train, y_test))

plot_decision_regions(X=X_combined_std, y=y_combined, classifier=ppn,

test_idx=range(105, 150))

plt.xlabel('petal length [standardized]')

plt.ylabel('petal width [standardized]')

plt.legend(loc='upper left')

plt.show()

20191114200152356304.png

可以看出三个类别并没有被完美分类,这是由于这三类花并不是线性可分的数据。

原文地址:https://www.cnblogs.com/Dzha/p/11860914.html

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值