单代号网络图计算例题_常用连续随机变量的关系与密度函数的计算

477907e711b11541d7bfcce885f6c6b3.png

第一节整理了一下常用的连续随机变量的密度函数,并以一张图给出它们之间的关系。接下来回顾了计算密度函数的基本方法,最后以第一节中的 3 个密度函数的推导作为例题

1.随机变量分布及特征

1.1 常用连续分布的联系

这里首先给出

函数的几个用于计算的性质:

接下来给出几个常用连续分布的密度函数

伽马分布

贝塔分布

Fisher Z分布

分布

柯西分布

标准柯西分布

指数分布

卡方分布

分布

4aa95fc60abdfa13ea1f5bd2ae458383.png

图中虚线表示

分布的渐进关系,此外
分布与
分布的关系没有给出(很少用是一方面,关键是一条线穿过去这图就不好看了hahahaha)。

关于其中部分关系的推算我放在第三节例题中结合第二节的公式来展示。

1.2 期望

随机变量的数学期望

对于随机变量的函数

,其数学期望的计算为

1.3 方差

方差的定义给出的计算公式为

当我们已知随机变量

的期望
,这时候我们计算方差就等价于计算函数
的期望。

有时候用上述方法来计算方差较为麻烦,因此有另一个公式

其实其本质上是一个公式
忘了公式怎么写的时候可以自己推出来。

用哪一个公式来计算方差更方便,要看具体分布情况。

2.分布函数与密度函数的计算

2.1 一维随机变量

连续随机变量

的分布函数
其密度函数为

密度函数的几个性质(用法)

对于随机变量

的函数
,这里
是严格单调函数,且导数
存在,其反函数为
,则
的密度函数为(这里为了区分
的密度函数用
表示,并不是下文的边缘密度函数)

2.2 多维随机变量(以二维为例)

设二维连续随机变量的联合密度函数为

,联合分布函数为:

边缘密度函数与边缘分布函数为:

-----------------------------------------------------------------------------------------------

则称随机变量

相互独立,否则就是 不相互独立的,也称 相依的。

若随机变量

相互独立,则
也相互独立。

-----------------------------------------------------------------------------------------------

卷积公式

若连续随机变量

相互独立,其密度函数分别为
,则
的密度函数为

证:
的分布函数为
对上式求导即可得
的密度函数。这里
.

例 正态分布均值密度函数推导

,下面先证

由卷积公式,我们可以直接计算

的密度函数:

用归纳推理法,我们假设

有密度函数为

则第

项可以用卷积公式计算得到:

由此证得:

,接下来我们证明

这里就简单多了,用公式(1),这里

,

这里我们就得到了

,因为有
,因此
.

变量变换法

接下来介绍的变量变化法是较为常用的方法,在本科阶段的教材上就有,这里回顾一下,以二维随机变量为例

的联合密度函数为
,如果函数
有连续偏导数,且存在唯一的反函数
,其变换的雅可比行列式

,则
的联合密度函数为

若我们只求一个随机变量

的密度函数,依然可以用上面的方法,这时我们给它新添一个随机变量就是了,一般令
。该方法一般称作
增补变量法,具体见下面 例3

3.例题

下面几个例题都以第一节的分布函数的关系为例。

例1 随机变量

,证明
服从指数分布

首先

,这里要明确一下定义域与值域
其反函数为
,其定义域即为刚说
,下面我们用公式(1)来计算随机变量
的密度函数

,就是我们最常见的指数分布的密度函数
.

-----------------------------------------------------------------------------------------------

例2 随机变量

,证明
服从分布
这里有一点非常关键,对于取值范围在
分布来说,函数
不是严格单调的。

幸运的是,

分布的密度函数是对称的,因此我们可以分别计算,最后将密度函数加和.

的反函数为
.

先给出

分布的密度函数
,下面用公式(1)计算
的密度函数

时,
的反函数为
.计算出来的密度函数与
时相同,加和后得到
的密度函数:

该式即为

的密度函数,为了更清晰的比较,我们写一下
的密度函数:

是不是和上面的一样?

-----------------------------------------------------------------------------------------------

上面是单随机变量的函数的密度函数的计算,下面来看多维随机变量(以二维为例)函数的密度函数的计算。

例3

,证明
.

,有
,存在唯一的反函数
其对应的雅可比行列式为

带入公式(2)中即可:

上式不用急着整理,因为我们如果想得到

的密度函数,就要对上面的联合密度函数进行积分求边缘密度函数,上式可以凑出来一个
的密度函数,其积分为1,剩下的就是我们要的

可以看出

,即
.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值