泊松分布 流量发生器_【心得篇】常见随机变量的概率分布

c9a8ab1f25c46708f80b1fbee978527b.png

随机变量将事件映射为一个数,随机变量的概率分布反映了各事件发生的可能性。根据随机变量的取值范围,我们可以区分出离散型随机变量{取值为整数}和连续型随机变量{取值为实数}。事实上还有混合型随机变量,但不在本文讨论的范围之内。

每个离散随机变量的本质特征在于其概率密度函数(或分布律)以及概率分布函数,这一本质同时决定了它们的期望(均值)和方差。

对于离散性随机变量来说,期望是将随机变量的所有取值与其概率相乘后求和,即

,方差是对随机变量与均值的距离的平方乘上响应概率再求和,即
;对于连续性随机变量来说,期望是随机变量取值乘上相应概率密度再积分,即
,方差是对随机变量与均值的距离的平方乘上相应概率密度再积分,即

以下介绍各种随机变量,对于每种随机变量,我们会介绍其本质特征、期望、方差以及生活中的应用。


离散型随机变量

常见的离散型随机变量分布有以下4种:0-1分布,二项分布,泊松分布,几何分布。

0-1 分布是最简单的随机变量分布。假设某一事件发生的概率为p(当然,它不发生的概率就是1-p)。于是对0-1分布的随机变量X来说,X的取值只有0和1两种情况,其分布律就是

。口算可知,它的期望为p,方差为p(1-p)。至于生活中的应用,比如丢一次硬币,设事件“正面朝上”对应1,事件“负面朝上”对应0。

二项分布是0-1 分布的推广。假设某一基本事件发生的概率为p(当然,它不发生的概率就是1-p)。连续进行n次试验(n为常数),将这n次实验中基本事件发生的次数记为随机变量X。于是对二项分布的随机变量X来,X的取值有0、1、2……n,共n+1种情况,其分布律就是

,C表示组合数。不妨将二项分布视为n个相互独立的0-1 分布,因此可得它的期望为np,方差为np(1-p)。至于生活中的应用,比如买n张彩票,k张中奖的概率或者抽检产品n件,k件不合格的概率。

泊松分布也是生活中常见的一种分布。它含有一个参数

,分布律为
,其中X的取值为任意非负整数。它的期望和方差均为
,计算时根据定义并利用
的麦克劳林展开式即可。至于生活中的应用,比如某商场一天的客流量,某个路口发生事故的数量。

最后是几何分布。假设某一基本事件发生的概率为p,连续进行k次实验,第k次实验终于成功一次的概率为

。它的期望为
,方差为
,计算可利用错位相消法。至于生活中的应用,比如为了中一次奖而连续买的彩票张数。

连续型随机变量

常见的连续型随机变量分布有以下三种:均匀分布,正态分布,指数分布。

均匀分布是最简单的连续型随机变量分布。比如在[0,1]之间任取一个实数X,则X的概率密度函数为

,分布函数为
,期望为
,方差为
。计算只需根据定义进行积分。至于生活中的应用,比如在[0,1]中取一个随机数(假设各数字被取的概率相同)。

指数分布是一种具有无后效性的连续型随机变量分布。它有一个参数

,其概率密度函数为
,分布函数为
,期望为
,方差为
。至于生活中的应用,比如一个零件的寿命等。

正态分布是最常见的连续型随机变量分布。其概率密度函数为

,概率分布函数一般记为
,具体形式包含反常积分,即对f(x)的积分,故此处略去。正态分布的两个参数,
,前者等于期望,后者等于方差。至于生活中的应用,比如一次成绩测验的成绩分布,人群的智商分布等等。

92d72ff9efbacb28dcb2859303e9192a.png
随机变量分布表格

后记

还是很惊讶,不确定的东西在更大的视野之下变得确定,这些函数是对部分现实的降维打击。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值