python与财务数据挖掘_Python数据挖掘实战2:财政收入影响因素及预测

本文基于《Python数据分析与挖掘实战(第2版)》的实例,利用Python进行财政收入影响因素的分析和预测。通过Lasso回归筛选关键属性,构建灰色预测模型和线性支持向量回归模型进行2014年和2015年的财政收入预测。分析了数据的描述性统计、相关性,并展示了预测结果。
摘要由CSDN通过智能技术生成

Reference

《Python数据分析与挖掘实战(第2版)》

第6章,页码:P170,代码略有改进

data.csv数据下载

分析过程

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

import sys

from GM11 import GM11

from sklearn.linear_model import Lasso

from sklearn.svm import LinearSVR

pd.set_option('max_columns',1000)

pd.set_option('max_row',300)

pd.set_option('display.float_format', lambda x: '%.5f' % x)

plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签

plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号

data = pd.read_csv('data.csv') #读取数据

print(data.head()) #展示前几行

image.png

#描述性统计分析

#依次计算最小值、最大值、平均值、标准差

descriptio

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值