勇敢驴驴
码龄3年
关注
提问 私信
  • 博客:211,013
    211,013
    总访问量
  • 83
    原创
  • 647,423
    排名
  • 553
    粉丝
  • 6
    铁粉

个人简介:不到一年的时间,要努力学习呀!一定要上岸上岸上岸!加油!

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:山东省
  • 加入CSDN时间: 2021-12-13
博客简介:

xllzuibangla的博客

查看详细资料
个人成就
  • 获得257次点赞
  • 内容获得65次评论
  • 获得1,583次收藏
  • 代码片获得4,005次分享
创作历程
  • 1篇
    2023年
  • 83篇
    2022年
成就勋章
TA的专栏
  • 人工智能
    18篇
  • Python
    3篇
  • 区块链
  • sta
    1篇
  • STATA学习
  • 市场
    1篇
  • 数模
    1篇
  • Python金融数据挖掘
    21篇
  • 机器学习
    17篇
  • tongjian
  • 计量经济学
    6篇
  • 量化投资
    8篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

人工智能与机器学习

人工智能与机器学习2023-02-27
原创
发布博客 2023.02.27 ·
447 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

市场学 练习题目1

28分
原创
发布博客 2022.07.12 ·
6753 阅读 ·
8 点赞 ·
0 评论 ·
51 收藏

准备前工作

1、根据题目搜索论文2、多查查看外文,(翻译+自己描述)重复率低,有道翻译即可1、知网下载论文(中文)、外文(谷歌学术)2、Github、CSDN查代码3、知乎4、百度文库——论文模板5、学兔兔、云盘网站——图书电子版6、b站视频教程7、淘宝往年论获奖论文1、国家数据统计局2、各省数据中心3、学校图书馆电子数据库4、国际资料:国际版必应查、大木虫Google镜像、Sci-hub5、微信搜索用搜集资料的能力覆盖自己知识的不足不要因为难就放弃!1、MATLAB(新手使用!!!)加减乘除、逻辑运算、循环结构、函数
原创
发布博客 2022.07.04 ·
398 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

python期末

说真的对于这次期末我并没有报有很好的期望因为我知道自己的水平很烂但是当我看到那么多高分的时候心里还是会很难受自己可能的确不适合学习编程既然这次考的那么差那就问问老师哪里扣分多以后编写代码的时候注意但是我万万没想到主要扣分点竟然有两个1是第一题没有统计金额,虽然不知道扣几分,这个的确是我的问题,而且是非常值得扣分的地方,狠狠的惩罚我不细心2报错!!!!老师强调了那么多遍,不能报错,不能报错,难道我耳朵被堵住了?全程只有一个警告,就是因为他?我很不服!你说你运
原创
发布博客 2022.06.26 ·
610 阅读 ·
1 点赞 ·
1 评论 ·
0 收藏

S的返回值

1、会议2、资料(课程资料、答疑小册子、读入文件3、答疑时间周一 8:00pm-9:30pm:李春涛 (数据清洗、数据合并、循环)周二 8:00pm-9:30pm:薛原 (网络爬虫、正则表达式、python)周三 8:00pm-9:30pm:司海涛 (正则表达式、网络爬虫、python)周四 8:00pm-9:30pm:闫续文 (结果输出系列、事件研究、数据清洗)周五 8:00pm-9:30pm:张计宝 (文本分析、网络爬虫、正则表达式、python)出问题,带着报错提示图提问。4、结课后有网络爬虫应用大赛
原创
发布博客 2022.06.25 ·
416 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

第八章全部代码

第八章复习思考题2
原创
发布博客 2022.06.13 ·
464 阅读 ·
1 点赞 ·
2 评论 ·
2 收藏

Python金融数据挖掘 复习思考题 第2章

第1题1、题目生成一个5*5的矩阵,其元素是区间[1,10]中的随机整数。2、代码import numpy as npa = np.random.randint(1,10,25).reshape(5,5)print(a)3、结果[[5 3 7 6 4] [3 7 4 3 7] [1 7 4 4 3] [1 8 5 6 8] [8 4 4 2 9]]第2题1、题目生成一个4*4的矩阵,其元素符合正态分布。2、代码import numpy as
原创
发布博客 2022.05.31 ·
1881 阅读 ·
1 点赞 ·
0 评论 ·
12 收藏

转义字符详述

1、常见转义字符\t 的意思是 横向跳到下一制表符位置 \r 的意思是 回车
的意思是回车换行2、所有转义字符 转义字符 意义 ASCII码值(十进制) \a 响铃(BEL) 007 \b 退格(BS) ,将当前位置移到前一列 008 \f 换页(FF),将当前位置移到下
原创
发布博客 2022.05.30 ·
598 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

Python金融数据挖掘 第11章 复习思考题3 某年各省级行政区环境污染状况的统计数据(已经过标准化处理),现采用K均值聚类方法,编写Python程序将省级行政区分成4类。

3.某年各省级行政区环境污染状况的统计数据(已经过标准化处理),包括生活污水排放量(x),生活二氧化硫排放量(x2),生活烟尘排放量(x3),工业固体废物排放量(x4),工业废气排放总量(x5),工业废水排放量(x6),GDP水平(gdp)以及地理位置(geo)等。现采用K均值聚类方法,编写Python程序将省级行政区分成4类。详细数据见封底教学辅助文件“环境污染数据.txt”。...
原创
发布博客 2022.05.29 ·
1271 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

Python金融数据挖掘 第11章 复习思考题2 (聚类)选取中华人民共和国第六次人口普查的各地区人口数以及男女比例进行K-Means聚类分析。

选取中华人民共和国第六次人口普查的各地区人口数以及男女比例进行K-Means聚类分析.
原创
发布博客 2022.05.27 ·
1431 阅读 ·
4 点赞 ·
4 评论 ·
14 收藏

Python金融数据挖掘 第11章 复习思考题1 (聚类)给出一个数据集data_multivar.txt,里面有200个点坐标,在平面坐标系下可以画出它的散点图,用K均值聚类算法来训练模型,分4类。

1给出一个数据集data_multivar.txt,里面有200个点坐标,在平面坐标系下可以画出它的散点图,如图11-12所示。data_multivar.txt图11-12 数据集 data_multivar.txt 散点图用K均值聚类算法来训练模型,将该数据集的200个点分成4类。注意:运行之前,首先将给出的数据集data_multivar.txt 拷贝到相应的文件夹中。读者可以在程序中设置k值为2、3、5等,运行代码进行比较。...
原创
发布博客 2022.05.27 ·
1457 阅读 ·
2 点赞 ·
2 评论 ·
9 收藏

性能评估 5 fbeta_score Fβ值

1、定义Fβ值F2分数中,召回率的权重高于精确率,而F0.5分数中,精确率的权重高于召回率。2、代码y_true=[1,1,1,1,1,0,0,0,0,0]y_pred=[0,0,1,1,0,0,0,0,0,0]print('Accuracy Score:',accuracy_score(y_true,y_pred,normalize=True))print('Precision Score:',precision_score(y_true,y_pred))prin..
原创
发布博客 2022.05.26 ·
859 阅读 ·
1 点赞 ·
1 评论 ·
2 收藏

性能评估 4 f1_score F1值

1、定义2/f1 = 1/查准率+1/查全率2、代码from sklearn.metrics import accuracy_score,precision_score,recall_score,f1_score,fbeta_scorey_true=[1,1,1,1,1,0,0,0,0,0]y_pred=[0,0,1,1,0,0,0,0,0,0]print('Accuracy Score:',accuracy_score(y_true,y_pred,normalize=True))pr
原创
发布博客 2022.05.26 ·
134 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

性能度量 3 Recall Score 查全率、召回率

1、定义查全率=TP/(TP+FN)2、代码from sklearn.metrics import accuracy_score,precision_score,recall_scorey_true=[1,1,1,1,1,0,0,0,0,0]y_pred=[0,0,1,1,0,0,0,0,0,0]print('准确率Accuracy Score:',accuracy_score(y_true,y_pred,normalize=True))print('查准率Precision Sc
原创
发布博客 2022.05.26 ·
712 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

性能度量 2 precision_score 查准率

1、定义计算分类结果的查准率sklearn.metrics.precision_score(真实标记集合,预测)2、代码from sklearn.metrics import accuracy_score,precision_scorey_true=[1,1,1,1,1,0,0,0,0,0]y_pred=[0,0,1,1,0,0,0,0,0,0]print('准确率Accuracy Score:',accuracy_score(y_true,y_pred,normalize.
原创
发布博客 2022.05.26 ·
595 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

性能度量 1 accuracy_score 准确率

1、定义计算分类结果的查准率sklearn.metrics.accuracy_score(真实标记集合,分类器对样本集预测的预测值,normalize = [True:比例,False:数量],sample_weight = 样本权重,默认为1)2、代码from sklearn.metrics import accuracy_scorey_true=[1,1,1,1,1,0,0,0,0,0]y_pred=[0,0,1,1,0,0,1,1,0,0]#准确率print('准确率',
原创
发布博客 2022.05.26 ·
906 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

常见分类算法应用范围/数据要求

单一的分类算法:决策树、贝叶斯、人工神经网络、K-近邻、支持向量机和基于关联规则的分类,HMM组合分类算法:Bagging和Boostingk-近邻(kNN,k-Nearest Neighbors)算法1找出与未知样本x距离最近的k个训练样本,看这k个样本中多数属于哪一类,就把x归为那一类。模型输入要求:连续值,类别型变量需进行one-hot编码,由于是计算距离,有必要对数据进行归一化模型重要参数:K值及距离的定义优点:易于理解和实现缺点:计算量大,复杂度高,不适合实时场景
转载
发布博客 2022.05.25 ·
1452 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

分类模型对比计较

一、决策树——decision tree1、定义分类、预测方法,有监督的学习算法,以树状图为基础,输出结果为简单实用的规则。是一系列if-then语句。2、解决问题分类、回归。3、原理是贪心算法,即在特性空间上执行递归的二元分割,决策树由节点和有向边组成给。内部节点:一个特征或者属性。 叶子节点:一个分类。4、优点可读性强,便于理解和解释。(树的结构具有可视化); 训练所需数据少,使用开销呈指数分布,分类速度快; 易于通过静态测试来对模型进行评测; 可处理多路输出问
原创
发布博客 2022.05.25 ·
542 阅读 ·
0 点赞 ·
1 评论 ·
2 收藏

人工智能 .cross_val_score 上边几篇全部少了“import numpy as np”

1、基础便利函数在指定数据集上运行指定学习器时,用k折交叉获取的最佳性能sklearn.model_selection.cross_val_score(<指定学习器>,X:数据集中样本集,y:数据集中标记集,cv=k折交叉生成器/None)(太多了,以后再补上)2、代码from sklearn.model_selection import cross_val_scoreimport numpy as npfrom sklearn.datasets .
原创
发布博客 2022.05.25 ·
152 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

人工智能 LeaveOneOut(留一法)(LOO)

1、代码n:数据集大小from sklearn.model_selection import LeaveOneOutX=np.array([[1,2,3,4], [11,12,13,14], [21,22,23,24], [31,32,33,34]])y=np.array([1,1,0,0])lo=LeaveOneOut()# lo.len(y)for train_index,test_index in lo.split(X):
原创
发布博客 2022.05.25 ·
1357 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏
加载更多