生成全1矩阵_一类线性代数中特殊的矩阵类

文章主要讨论trace为0的矩阵类,显然其全体构成一个线性空间。

一般来讲,这种矩阵类较多出现在数学类考研的内容中,其出题形式也比较单一,题目基本上都离不开如下的描述:

中由元素
生成的子空间,其中
,证明:

问题其实等价于以下叙述:

设trace为0的矩阵生成的线性空间为
证明:
.

这样看问题似乎简化了一些,只需证明所有trace为0的矩阵都可以分解为

的形式。因为:若
, 有
,这等价于
,如果所有trace为0的矩阵都可以分解为
的形式,那么
,这样问题就得证了。

设矩阵

满足
,我们将证明分为两步:

Step1:证明:

相似于一个对角元全为0的矩阵
事实上我们只对
的Jordan标准型矩阵
进行分解即可,因为若
,则:
此时,
,有
。因此,后续的证明我们直接将
当作标准型矩阵处理。

利用数学归纳法

  1. 当矩阵阶为1的时候显然成立
  2. 设矩阵阶为
    时成立,下证对阶为
    的矩阵也成立。

情况1:矩阵

有大于1阶的Jordan块,

c7cd4c270ea833bb414b203c9c1f8e34.png

由于:

e916c126efa2a485bad435bbd2a4c042.png

6b9cb5c148bfad0a50a204dd4d81f1cc.png

阶矩阵,由假设,存在k阶矩阵,使得
为对角元为0的矩阵。

f264bced6db9ae794454976b3e9ec7ab.png

那么:

为对角元为0的矩阵。

情况2:矩阵

可对角化,

f288f9ba9372e638bc0dcb2c155df2eb.png

不妨假设

(如果对所有的
均相等,那么有
),则

e3ab299e9ca89ed46c3acfefffeca3e6.png

这样我们就得到了形如情况1的矩阵形式,这样类比上面证明中矩阵的构造即可。

Step1:证明:一个对角元全为0的矩阵

可以分解为
的形式

29d33951889bd2c171b25a7b72cddb68.png

ec3187490bb4929d7902a4ecd39f3914.png

那么有:

,至此,我们已经证明了:

又因为

元线性方程
的解空间,不难证明其维度为

因此


细细看来,本题重要考察的还是矩阵分解,其实分解并没有想象中的困难,像QR分解,SVD分解,极分解等,在数学专业线性代数考试中还是很常见的,很多分解都是死的方法,只需要记牢固就行了。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值