高中数学的知识点中,线性回归方程一直是个难点,困住了很多同学,今天小编带大家分析一下相关内容。
首先我们来看看,什么是线性回归方程。
回归直线:观察散点图的特征,发现各个大致分布在通过散点图中心的一条直线附近。
如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线。求出的回归直线方程简称回归方程。
线性回归是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一,应用十分广泛。
变量的相关关系中最为简单的是线性相关关系,设随机变量与变量之间存在线性相关关系,则由试验数据得到的点( ,)将散布在某一直线周围。因此,可以认为关于的回归函数的类型为线性函数。
这些定义我们在书上就可以知道,但是只是知道定义,也未必会做题,线性回归方程仍然是高中数学中很多同学头疼的部分,今天就拿例子来说明一下。
其实,这部分只是并没有大家所想的那么难,因为回归直线方程只要求会运用它进行具体计算a、b,求出回归直线方程即可,并不要求掌握回归直线方程的推导过程。
那么学习这部分内容都应该注意写什么呢?
1、只有在散点图大致呈线性时,求出的回归直线方程才有实际意义,否则,求出的回归直线方程毫无意义。因此,对一组数据作线性回归分析时,应先看其散点图是否成线性。
2、求回归直线方程,关键在于正确地求出系数a、b,由于求a、b的计算量较大,计算时仔细谨慎、分层进行,避免因计算产生失误
另外,回归直线方程在现实生活与生产中有广泛的应用。应用回归直线方程可以把非确定性问题转化成确定性问题,把“无序”变为“有序”,并对情况进行估测、补充。因此,学过回归直线方程以后,同学们应该自觉增强应用回归直线方程解决相关实际问题的意识,把所学的知识变成工具,便于解决其他问题。
以上就是今天的分享了,希望对同学们有所帮助,其实只要掌握了方法,高中九科都不难。