大家在实际项目中对数据ID的生成肯定每次都会纠结?
纠结一:如果用数据库的自增模式导致今后的分库分表无法分布式,如果要分布式,是不是考虑步长吧
纠结二:如果用GUID/UUID方式虽然简单也可分布式,但可能在有些数据库中索引效率肯定没有数字类型的索引效率高
纠结三:如果用redis的数字自增模式,考虑到肯定要自己做开发整合,还需考虑redis今后的吞吐承受能力,需要你额外的集群部署来增加吞吐量,那你还要掌握redis的运维知识
纠正四:利用第三方框架生成唯一ID,比如ZK,或者大公司的专门的ID开源框架,这个是不是你要去熟悉学习的成本
说了这么多,那我们正式谈谈我对这块的解决方案,我经历过大大小小的项目,也每次讨论数据表里的业务ID怎么去生成,我目前最近经手的项目最简单的方式是用雪花算法,但原有的雪花算法会生成出比较长的一个数字ID,那我们就稍微改造一下呗。
改造点:其实就是把时间间隔差缩短,自然而然生成的ID位数就小了,直接贴代码给各位看看
1、把唯一时间戳调整一下
2、把当前的间隔时间戳调整一下
完工,这个生成的唯一ID数字相对已经比较短了,如果再把TimeGen的时间加大生成出来可能不是你们期望的,你们可以试试哦!
最终的生成ID效果图给各位看看
大家完全不用担心ID生成重复,只要控制好workId,就能生成唯一性
接下来说一下如何运用到项目中
大家可能觉得运用不就是很简单嘛,实际写到代码里调用可以了。但我说的是运用的意思是如何用好它,首先你的项目一开始没有考虑分布式机制,单纯的就是一个API或者服务能处理一套业务流程,那就比较简单的在项目里调用可以了;
如果准备考虑部署N多个同场景的业务处理服务,并且可能跨多服务器集群部署,那可以把ID生成独立做成微服务,并且也可以负载它,并且控制好workId,那就大功告成了。
建议:生成后的ID,完全可以当主键KEY,也可以当作业务单来运用实际的业务流程中(比如订单号、流水单号等,如果区分单据那还可以加上你的自定义前缀字母)
那就贴出调整后的雪花算法的代码,希望给大家有所帮助,如有什么问题,可评论留言,今后有什么好东西我也继续分享给各位,也请大家多多指教,互相学习。
1publicclass IdWorker
2 {
3//机器ID
4//private static long _workerId; 5privatestaticreadonlylong _twepoch = 687888001020L; //唯一时间,这是一个避免重复的随机量,自行设定不要大于当前时间戳
6//private static readonly long _twepoch = 637353357826273090L; 7privatestaticlong _sequence;
8privatestaticint workerIdBits = 4; //机器码字节数。4个字节用来保存机器码(定义为Long类型会出现,最大偏移64位,所以左移64位没有意义) 9publicstaticlong MaxWorkerId = -1L ^ -1L << workerIdBits; //最大机器ID10privatestaticint sequenceBits = 10; //计数器字节数,10个字节用来保存计数码11privatestaticreadonlyint _workerIdShift = sequenceBits; //机器码数据左移位数,就是后面计数器占用的位数12privatestaticreadonlyint _timestampLeftShift = sequenceBits + workerIdBits; //时间戳左移动位数就是机器码和计数器总字节数13publicstaticlong SequenceMask = -1L ^ -1L << sequenceBits; //一微秒内可以产生计数,如果达到该值则等到下一微妙在进行生成14privatestaticlong _lastTimestamp = -1L;
15privatestaticreadonlyobject _locker = newobject();
1617///<summary>18/// 机器码
19///</summary>20///<param name="workerId"></param>21public IdWorker(long workerId=1)
22 {
23//if (workerId > MaxWorkerId || workerId < 0)
24//throw new Exception($"worker Id can't be greater than {workerId} or less than 0 ");
25//_workerId = workerId;26 }
2728publicstaticlong NextId(long workerId)
29 {
30lock (_locker)
31 {
32long timestamp = TimeGen();
33if (_lastTimestamp == timestamp)
34 { //同一微妙中生成ID35 _sequence = (_sequence + 1) & SequenceMask; //用&运算计算该微秒内产生的计数是否已经到达上限36if (_sequence == 0)
37 {
38//一微妙内产生的ID计数已达上限,等待下一微妙39 timestamp = TillNextMillis(_lastTimestamp);
40 }
41 }
42else43 { //不同微秒生成ID44 _sequence = 0; //计数清045 }
46if (timestamp < _lastTimestamp)
47 { //如果当前时间戳比上一次生成ID时时间戳还小,抛出异常,因为不能保证现在生成的ID之前没有生成过48thrownew Exception($"Clock moved backwards. Refusing to generate id for {_lastTimestamp - timestamp} milliseconds");
49 }
50 _lastTimestamp = timestamp; //把当前时间戳保存为最后生成ID的时间戳51long nextId = (timestamp - _twepoch << _timestampLeftShift) | workerId << _workerIdShift | _sequence;
52return nextId;
53 }
54 }
5556///<summary>57/// 获取下一微秒时间戳
58///</summary>59///<param name="lastTimeStamp"></param>60///<returns></returns>61privatestaticlong TillNextMillis(long lastTimeStamp)
62 {
63long timestamp = TimeGen();
64while (timestamp <= lastTimeStamp)
65 {
66 timestamp = TimeGen();
67 }
68return timestamp;
69 }
7071///<summary>72/// 生成当前时间戳
73///</summary>74///<returns></returns>75privatestaticlong TimeGen()
76 {
77return (long)(DateTime.UtcNow - new DateTime(1998, 11, 1, 0, 0, 0, )).TotalMilliseconds;
78 }
79 }
最后来一局感慨:简单也是美!!!