前言:
唉 ! 说来心酸 小毕的电脑是Mac的m2花了2.7w 买的 , 距今已有两年了, 确实用着爽 日常工作中 开着7个程序 , 连着数据库 , 连着 redis , bilibili看着视频 , goole下载东西 , 并且打着视频会议 这种情况下 两年了 电脑风扇都没转过 , 有的时候我都感觉用这个电脑都浪费了
可是 😭 ! 自从小毕学了Ai 开始从本地跑自己的大模型 我才知道 我的电脑如此差劲 , 10MB的训练集 只分成32个batch , epoch 都只能设置5轮以下 ,在这种情况下 我的电脑需要跑 15个小时左右 实在是耽误学习 ,特别影响我感受模型 感受参数对模型的影响 所以我果断放弃我的本地主机 , 选择了用 我 本地的Pycharm编写代码连接远程服务器进行训练 ,
wow!!! 我只能说太爽了 你必须学会!
话不多说 开始教学!
第一步 . 注册 AutoDl 算力平台
第一步 . 注册 AutoDl 算力平台 https://www.autodl.com/ (对比 阿里云 百度云 等... 这个算是最便宜的了,大佬们都在用这个算力平台,所以我也跟风选择了这个)
随便选择一张卡 点击 ''一卡可租'' 按钮 进入创建页面
点击立即创建后 进入到 这个页面 你就会看到你租用的显卡信息
强烈建议大家 先关机 然后点击更多 用 无卡模式先进行配置 , 无卡模式 0.1元一小时 所以很划算 , 等大家把环境都配置好后 再重启机器 进行训练
到这里 AutoDl方面就弄完了 我们接下来看 PyCharm 怎么远程连接 AutoDl
第二步 : PyCharm远程连接AutoDl
进入到SSH后 我们开始配置
回到AutoDl 官网 复制你刚刚租用显卡的 登陆指令
ssh -p 13411 root@connect.bsdd1.seetacloud.com
大家拿到的 大概是这个样子
@后面的是主机地址 : connect.bsdd1.seetacloud.com
13411 是端口号
默认用户名是root
( 配置时 注意空格 前后都不要有空格 否则会报错 )
配置好后: 点击 Next 进行下一步
进入 AutoDl官网 复制密码 并输入到 password中:
输入好后 点击 Next 进行下一步 程序会自己自检 是否连接成功 自检完毕后 点击Next 即可
接下来开始 重要的配置 :
选择 system Interpreter 中 : interpreter 代表 你的远程环境路径 : 和我选择相同即可 它就会把你需要用到的环境放到Miniconda3 下 , sync folders 代表 你本地写的Python代码 要同步到远程的那个地方 这里不建议选择 tmp下 最好自己创建一个文件夹 专门存放 本地代码同步到AutoDl的地方
点击 更换路径 的小框框
更换成自己想存放的路径即可
配置好后 点击 create , 此时 你的远程环境就配置成功了 等待pycharm 自动把你本地的环境和代码上传到 autoDl 即可(注意 自动上传代码的过程很慢 )
然后设置自动推送代码
此时开始 你写的所有代码 和任何实时的修改 , 都会自动的同步到 AutoDl上
在控制台 进入到你远程的环境中
进入到你自己存放远程代码的路径中 , 选择你要训练的 train.py文件 运行 python train.py 即可开始训练。
本地控制台会实时打印日志 哪里报错了 直接改 然后再重启 你会发现 4090 快的一批 !!
注意 本地python上传代码的过程会非常非常非常慢 如果自己会用 fileZilla 可以远程连接服务器 手动把代码上传到相应的目录,不过也很慢 总之比自动上传快 .
下载好fileZilla后 这样连接
点击上传就行了 .
好 ! 到这里本次教程就结束了
--- 小毕祝您一切顺利 一直幸福
2024-11-16
毕航聚