欧拉法求解微分方程_考研数学的奇技淫巧——常微分方程

本文探讨了如何利用欧拉法高效解决考研数学中的常微分方程,包括齐次和非齐次欧拉方程。通过特征方程和常数变易法,简化解题步骤,特别提到了拉普拉斯变换在处理含参数微分方程中的应用,以减少计算量。
摘要由CSDN通过智能技术生成

常微分方程是硕士研究生统一招生考试的必考题型,相对于其他内容难度偏容易。不过一些计算量很大的题目相当于提高了难度,此外还有一些是和无穷级数综合的,后者在此不表。

总的来说,考研数学的常微分方程是思路比较清楚的,因为大纲已经规定了几种方程的形式,不过我还是想根据这几年出的题目和个人体会,以两类题目为例给出和一般解法不太一样的思路。


欧拉方程和非齐次欧拉方程

首先我们看考纲的要求:会解欧拉方程

然后……然后就没了。

我们先看一看欧拉方程的定义:

上面的式子中

都是常数。一般来说,我们遇到的都是齐次方程,也就是
,但是请注意
非齐次欧拉方程也是欧拉方程。

首先我们要了解的是这一方程解的结构,和线性常系数方程类似,齐次欧拉方程的通解是n个线性无关解的线性组合,非齐次方程的通解是齐次方程的通解加上一个非齐次方程的特解。这样也就明确了我们的目标:就是找到n个线性无关的齐次解,再找一个非齐次特解。

齐次欧拉方程

常规的,也是一般教科书和辅导资料上使用的方法是对

换元,也就是令
或者
。首先我必须承认这是一个很好的方法,并且同时能够解齐次方程和非齐次方程。这是因为实际上我们只会解线性常系数微分方程,经过换元就可以以将欧拉方程换为一个我们会求解的线性常系数微分方程,因此出题老师必须巧妙地设置非齐次项使得经过换元后的非齐次方程可以通过待定系数法求特解。不过缺点在于换元后需要重算所有导数,并将主元换为
,是一个比较费时间的过程。另一个缺点(至少我认为)在于不够直观,除了记住换元的准则外并不能从方程结构本身看出来为什么要这样换元,为什么每求一次导数,
的次数就要加一呢?

另一种方法是比较直观的。观察到每求一次导数,

的次数就要加一,可以联想到幂函数的求导公式
。也就是说求一次导数使这部分次数减一,不过通过
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值