credit card fraud detection

概述
本文为机器学习入门贴,一方面作为自己的学习记录,另一方面,作为入门级代码分享,希望能给一些同学带来一点点帮助。欢迎指正交流。
摘要
本文以[kaggle信用卡欺诈判别原数据]为学习对象,利用决策树(decision tree)、主成分分析(principle component analysis)、线性判别分析(linear discriminant analysis)、梯度提升树(gradient boosting decision tree)、XGBoost等数据工程方法,对信用卡欺诈进行识别,并给出一些可视化结果。(https://www.kaggle.com/dalpozz/creditcardfraud)
正文
libraries go first

print(__doc__)
# import libraries
import pandas as pds
import numpy as np
from sklearn.tree import DecisionTreeClassifier
from sklearn.cross_validation import train_test_split
from sklearn import decomposition
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn import tree
import xgboost as xgb
from xgboost.sklearn import XGBClassifier
from sklearn.model_selection import GridSearchCV
from sklearn import metrics
import matplotlib.pyplot as plt
import graphviz
from time import time

导入数据,划分训练集和测试集,记录开始时间

DataFrame=pds.read_csv('./creditcard.csv')
featureframe = DataFrame.drop(['Time','Amount','Class'],axis=1)
targetframe=DataFrame['Class']
X, Xt, Y, Yt = train_test_split(featureframe,targetframe, test_size=
  • 0
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目录列表: 2dplanes.arff abalone.arff ailerons.arff Amazon_initial_50_30_10000.arff anneal.arff anneal.ORIG.arff arrhythmia.arff audiology.arff australian.arff auto93.arff autoHorse.arff autoMpg.arff autoPrice.arff autos.arff auto_price.arff balance-scale.arff bank.arff bank32nh.arff bank8FM.arff baskball.arff bodyfat.arff bolts.arff breast-cancer.arff breast-w.arff breastTumor.arff bridges_version1.arff bridges_version2.arff cal_housing.arff car.arff cholesterol.arff cleveland.arff cloud.arff cmc.arff colic.arff colic.ORIG.arff contact-lenses.arff cpu.arff cpu.with.vendor.arff cpu_act.arff cpu_small.arff credit-a.arff credit-g.arff cylinder-bands.arff delta_ailerons.arff delta_elevators.arff dermatology.arff detroit.arff diabetes.arff diabetes_numeric.arff echoMonths.arff ecoli.arff elevators.arff elusage.arff eucalyptus.arff eye_movements.arff fishcatch.arff flags.arff fried.arff fruitfly.arff gascons.arff glass.arff grub-damage.arff heart-c.arff heart-h.arff heart-statlog.arff hepatitis.arff house_16H.arff house_8L.arff housing.arff hungarian.arff hypothyroid.arff ionosphere.arff iris.2D.arff iris.arff kdd_coil_test-1.arff kdd_coil_test-2.arff kdd_coil_test-3.arff kdd_coil_test-4.arff kdd_coil_test-5.arff kdd_coil_test-6.arff kdd_coil_test-7.arff kdd_coil_train-1.arff kdd_coil_train-3.arff kdd_coil_train-4.arff kdd_coil_train-5.arff kdd_coil_train-6.arff kdd_coil_train-7.arff kdd_el_nino-small.arff kdd_internet_usage.arff kdd_ipums_la_97-small.arff kdd_ipums_la_98-small.arff kdd_ipums_la_99-small.arff kdd_JapaneseVowels_test.arff kdd_JapaneseVowels_train.arff kdd_synthetic_control.arff kdd_SyskillWebert-Bands.arff kdd_SyskillWebert-BioMedical.arff kdd_SyskillWebert-Goats.arff kdd_SyskillWebert-Sheep.arff kdd_UNIX_user_data.arff kin8nm.arff kr-vs-kp.arff labor.arff landsat_test.arff landsat_train.arff letter.arff liver-disorders.arff longley.arff lowbwt.arff lung-cancer.arff lymph.arff machine_cpu.arff mbagrade.arff meta.arff mfeat-factors.arff mfeat-fourier.arff mfeat-karhunen.arff mfeat-morphological.arff mfeat-pixel.arff mfeat-zernike.arff molecular-biology_promoters.arff monks-problems-1_test.arff monks-problems-1_train.arff monks-problems-2_test.arff monks-problems-2_train.arff monks-problems-3_test.arff monks-problems-3_train.arff mushroom.arff mv.arff nursery.arff optdigits.arff page-blocks.arff pasture.arff pbc.arff pendigits.arff pharynx.arff pol.arff pollution.arff postoperative-patient-data.arff primary-tumor.arff puma32H.arff puma8NH.arff pwLinear.arff pyrim.arff quake.arff ReutersCorn-test.arff ReutersCorn-train.arff ReutersGrain-test.arff ReutersGrain-train.arff schlvote.arff segment-challenge.arff segment-test.arff segment.arff sensory.arff servo.arff sick.arff sleep.arff solar-flare_1.arff solar-flare_2.arff sonar.arff soybean.arff spambase.arff spectf_test.arff spectf_train.arff spectrometer.arff spect_test.arff spect_train.arff splice.arff sponge.arff squash-stored.arff squash-unstored.arff stock.arff strike.arff supermarket.arff triazines.arff unbalanced.arff vehicle.arff veteran.arff vineyard.arff vote.arff vowel.arff water-treatment.arff waveform-5000.arff weather.nominal.arff weather.numeric.arff white-clover.arff wine.arff wisconsin.arff zoo.arff
IEEE-CIS Fraud Detection is a Kaggle competition that challenges participants to detect fraudulent transactions using machine learning techniques. KNN (k-Nearest Neighbors) is one of the machine learning algorithms that can be used to solve this problem. KNN is a non-parametric algorithm that classifies new data points based on the majority class of their k-nearest neighbors in the training data. In the context of fraud detection, KNN can be used to classify transactions as either fraudulent or not based on the similarity of their features to those in the training data. To implement KNN for fraud detection, one can follow the following steps: 1. Preprocess the data: This involves cleaning and transforming the data into a format that the algorithm can work with. 2. Split the data: Split the data into training and testing sets. The training data is used to train the KNN model, and the testing data is used to evaluate its performance. 3. Choose the value of k: This is the number of neighbors to consider when classifying a new data point. The optimal value of k can be determined using cross-validation. 4. Train the model: Train the KNN model on the training data. 5. Test the model: Test the performance of the model on the testing data. 6. Tune the model: Fine-tune the model by changing the hyperparameters such as the distance metric used or the weighting function. Overall, KNN can be a useful algorithm for fraud detection, but its performance depends heavily on the quality of the data and the choice of hyperparameters.

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值