credit card fraud detection

本文通过kaggle信用卡欺诈数据集,运用决策树、PCA、LDA、GBDT和XGBoost进行欺诈识别,探讨特征选择和模型效果,展示机器学习在欺诈检测的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概述
本文为机器学习入门贴,一方面作为自己的学习记录,另一方面,作为入门级代码分享,希望能给一些同学带来一点点帮助。欢迎指正交流。
摘要
本文以[kaggle信用卡欺诈判别原数据]为学习对象,利用决策树(decision tree)、主成分分析(principle component analysis)、线性判别分析(linear discriminant analysis)、梯度提升树(gradient boosting decision tree)、XGBoost等数据工程方法,对信用卡欺诈进行识别,并给出一些可视化结果。(https://www.kaggle.com/dalpozz/creditcardfraud)
正文
libraries go first

print(__doc__)
# import libraries
import pandas as pds
import numpy as np
from sklearn.tree import DecisionTreeClassifier
from sklearn.cross_validation import train_test_split
from sklearn import decomposition
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn import tree
import xgboost as xgb
from xgboost.sklearn import XGBClassifier
from sklearn.model_selection import GridSearchCV
from sklearn import metrics
import matplotlib.pyplot as plt
import graphviz
from time import time

导入数据,划分训练集和测试集,记录开始时间

DataFrame=pds.read_csv('./creditcard.csv')
featureframe = DataFrame.drop(['Time','Amount','Class'],axis=1)
targetframe=DataFrame['Class']
X, Xt, Y, Yt = train_test_split(featureframe,targetframe, test_size=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值