一、由于具有多张宽表且字段较多,每个宽表数据大概为4000万条,根据业务逻辑拼接别名,并每张宽表的固定字段进行left join 拼接SQL。这样就能根据每个宽表的主列,根据每个宽表的不同字段关联出一张新的集合。由于下来要进行分页查询,如果要使用SparkSQL进行分页查询,需要增加序号列,那么就在刚才的Sql之前增加一句 create table tableName as SELECT ROW_NUMBER() OVER() as id,* from (拼接的SQL) 就可创建一张带自增序列的,业务需要字段的几张宽表的关联集合,方便下来分页。
for(int i=0;i
SiCustomerLabelInfoModel Column = ColumnNames.get(i);
List ciMdaSysTable = ciCustomerJDao.getMdaSysTableName(Column.getColumnName());
String alias = "t_" + ciMdaSysTable.get(0).getTableId();
String aliasColumn = alias + "." + Column.getColumnName();
String aliasTable = ciMdaSysTable.get(0).getTableName() +" "+ alias;
if(mainTable == null){
mainTable = aliasTable;
}
if(ciMdaSysTable.get(0).getUpdateCycle() == 1){