尚硅谷_大数据技术之Flink(SQL)
在大数据领域,流处理以其低延迟的特性,一直受到实时处理项目的关注;而Flink横空出世之后,更是以其低延迟、高吞吐、良好的容错性保证和强大的对乱序数据的处理功能,受到了越来越多项目的青睐,已经成为了当前大数据实时项目的首选。
但Flink作为真正的流处理框架,流式的API调用尽管功能强大,但其编程风格和灵活多变的特点,让很多由传统关系型数据库、Spark等批式处理框架转型而来的程序员头痛不已。越来越多的技术人员,希望Flink能有像Spark一样方便、熟悉的API调用。
Flink Table API和Flink SQL
就是Flink为简化计算模型,降低用户使用实时计算门槛而设计的一套符合标准 SQL 语义的API。
自2015 年开始,阿里巴巴开始调研开源流计算引擎,最终决定基于 Flink 打造新一代计算引擎,针对 Flink
存在的不足进行优化和改进。在 2019 年初,阿里将代码开源,这就是Blink。Blink 在原来的 Flink
基础上,一个显著的贡献就是 Flink SQL 的扩展实现,丰富了原有API的功能。现在,越来越多的公司将Flink
SQL作为了大数据流式处理开发的首选;Flink Table API 和Flink
SQL,也就成为了Flink学习中,不可或缺的一部分。
尚硅谷在已有的Flink理论和项目课程的基础上,又精心打造了Table API 和Flink
SQL课程;通过对Flink Table API和Flink
SQL理论基础、调用方式和自定义函数的详细讲解,将Flink技能点的最后一块拼图补上,为转型期的工程师、学习期的同学提供新而全的技术支持。由于Table
API和SQL还处于快速发展中、尚未完善,有很多版本变化带来的API改变,课程中也做了具体说明,方便大家对各种版本的代码进行对比和兼容。