随机森林填补缺失值 python_用随机森林回归填补缺失值(特征矩阵中的缺失值)...

导入完整的数据集并探索

以波士顿数据集为例

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.datasets import load_boston

from sklearn.impute import SimpleImputer #用来填补缺失值的类

from sklearn.ensemble import RandomForestRegressor

from sklearn.model_selection import cross_val_score

dataset = load_boston()

X_full, Y_full = dataset.data,dataset.target

n_samples = X_full.shape[0]

n_features = X_full.shape[1]1

2

3

4

5

6

7

8

9

10

11

为完整的数据集放入缺失值

#首先确定我们希望放入的缺失数据的比例,在这里我们假设是50%,那总共就有506*13/2=3289个数据缺失

rng = np.random.RandomState(0)

missing_rate = 0.5

n_missing_samples = int(np.floor(n_samples * n_features * missing_rate))1

2

3

4

得到n_missing_samples为3289

#所有数据要随机遍布在数据集的各行各列当中,而一个缺失的数据会需要一个行索引和一个列索引

#如果能够创造一个数组,包含3289个分布在0~506中间的行索引,和3289个分布在0~13之间的列索引,那我们就可以利用索引来为数据中的任意3289个位置赋空值

#然后我们用0,均值和随机森林来填写这些缺失值,然后查看回归的结果如何

missing_features=rng.randint(0,n_features,n_missing_samples)

# randint (下限,上限,n)在下限和上限之前取出n个整数(可重复)

missing_samples=rng.randint(0,n_samples,n_missing_samples)1

2

3

4

5

6

missing_samples = rng.choice(dataset.data.shape[0],n_missing_samples,replace=False)

我们现在采样了3289个数据,远远超过我们的样本量506,所以我们使用随机抽取的函数randint。但如果我们需要的数据量小于我们的样本量506,那我们可以采用np.random.choice来抽样,choice会随机抽取不重复的随机数, 因此可以帮助我们让数据更加分散,确保数据不会集中在一些行中。

下一步,我们copy一下未缺失的数据,因为原数据我也想留着嘛。

X_missing = X_full.copy()

y_missing = y_full.copy()

X_missing[missing_samples,missing_features] = np.nan

X_missing = pd.DataFrame(X_missing)1

2

3

4

然后让随机选中的位置变为空,转为DataFrame格式

结果如下

当然,这组数据有506行,这只是一部分。

使用均值进行或0填补

imp_mean = SimpleImputer(missing_values=np.nan, strategy='mean')

# 第一个参数,是告诉他缺失值是什么样子的。第二个参数,是采用均值填补。

# 也可以采用中位数,众数等等

X_missing_mean = imp_mean.fit_transform(X_missing)

# 训练fit+导出predict >>>> fit_transform1

2

3

4

5

填补完毕,我们来查看一下是否填补完全

X_missing_mean = pd.DataFrame(X_missing_mean)

X_missing_mean.isnull().sum()1

2

将numpy格式的数据转换成DataFrame, 然后用isnull()方法查看是否有空值,因为506行看不完全,所以才有sum(True=1,False=0)来确认。

之后,我们使用0来进行填补。

# 使用0进行填补

imp_0 = SimpleImputer(missing_values=np.nan,strategy="constant",fill_value=0)

X_missing_0 = imp_0.fit_transform(X_missing)1

2

3

使用随机森林填补缺失值

使用随机森林回归填补缺失值任何回归都是从特征矩阵中学习,然后求解连续型标签y的过程,之所以能够实现这个过程,是因为回归算法认为,特征矩阵和标签之前存在着某种联系。实际上,标签和特征是可以相互转换的,比如说,在一个“用地区,环境,附近学校数量”预测“房价”的问题中,我们既可以用“地区”,“环境”,“附近学校数量”的数据来预测“房价”,也可以反过来,用“环境”,“附近学校数量”和“房价”来预测“地区”。而回归填补缺失值,正是利用了这种思想。

X_missing_reg = X_missing.copy() #用回归填补缺失值的特征矩阵

sortindex = np.argsort(X_missing_reg.isnull().sum(axis=0)).values # axis=0 按列进行加和

#找出数据集中,缺失值从小到大排列的特征值的顺序

# argsort和sort的区别是,前者排完之后还有索引1

2

3

4

argsort 返回的是从小到大排序的顺序所对应的索引

然后再.values,对应的结果是

array([ 6, 12, 8, 7, 9, 0, 2, 1, 5, 4, 3, 10, 11], dtype=int64)

把这个赋值给sortindex

下面是核心部分

for i in sortindex:

# 构建我们的新特征矩阵(没有被选中去填充的特征们+原始的标签)和新标签(被选中去填充的特征)

df = X_missing_reg

# 新标签

fillc = df.iloc[:,i] # 所有的行,第六列

# 新特征矩阵

df = pd.concat([df.iloc[:,df.columns != i],pd.DataFrame(y_full)],axis=1) # 所有的行,除了第六列的所有列

# 在新特征矩阵中,对含有缺失值的列,进行0的填补

df_0 = SimpleImputer(missing_values=np.nan,strategy='constant',fill_value=0).fit_transform(df)

# 找出我们的训练集和测试集

Ytrain = fillc[fillc.notnull()] # 被选中要填充的特征中(现在是我们的标签),存在的哪些值,非空值

Ytest = fillc[fillc.isnull()] # 是被选中的要填充的特种中(现在是我们的标签),不存在的那些值,空值

# 我们需要的不是Ytest的值,而是Ytest所带的索引

Xtrain = df_0[Ytrain.index,:] # 在新特征矩阵上,被选出来的要填充的特征的非空值所对应的记录

Xtest = df_0[Ytest.index,:] # 新特征矩阵上,被选出来的要填充的特征所对应的空值所对应的记录

# 用随机森林的回归来填补缺失值

rfc = RandomForestRegressor(n_estimators = 100)#实例化

rfc = rfc.fit(Xtrain,Ytrain) # 导入训练集去进行训练

Ypredict = rfc.predict(Xtest) # 用predict接口将Xtest导入,得到我们的预测结果(回归结果),这个预测结果就是我们要用来填补空值的值

# 将填补好的特征返回到我们的原始特征矩阵中

X_missing_reg.loc[X_missing_reg.iloc[:,i].isnull(),i] = Ypredict1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

循环结束后,我们就可以得到填充完毕的特征矩阵(下图为一部分)

OK,那么未缺失的特征矩阵,用均值填补的缺失矩阵,用0填补的缺失矩阵,用随机森林回归填补的缺失矩阵已经处理完毕,下面我们把他们对比一下。

X = [X_full, X_missing_mean, X_missing_0, X_missing_reg]

mse = []

for x in X:

estimator = RandomForestRegressor(random_state=0, n_estimators=100) # 实例化

scores = cross_val_score(estimator,x,y_full,scoring="neg_mean_squared_error",cv=5).mean()

mse.append(scores * -1) # 负的均方误差1

2

3

4

5

6

7

8

一般来说mse越小越好,我们来看一下。

[*zip(["X_full", "X_missing_mean", "X_missing_0", "X_missing_reg"],mse)]1

结果如下:

[(‘X_full’, 21.62860460743544),

(‘X_missing_mean’, 40.84405476955929),

(‘X_missing_0’, 49.50657028893417),

(‘X_missing_reg’, 18.03513126175499)]

居然打分比原始数据集都高。

下面我们画个图,更加直观的看一下。

# 我们画个图看一下,更加直观一点。

x_lables = ['X_full'

,"X_missing_mean"

,"X_missing_0"

,"X_missing_reg"]

colors = ["r", "g", "b", "orange"]

plt.figure(figsize=(12,6)) # 画出画布

ax = plt.subplot(111) # 添加子图 plt.subplot

for i in np.arange(len(mse)):

ax.barh(i,mse[i],color=colors[i],alpha=0.6,align='center') # 画条形图,alpah是条的粗度,align是条放在哪里

ax.set_title('Imputation Techniques with Boston Data')

ax.set_xlim(left=np.min(mse)*0.9

,right=np.max(mse)*1.1) # 最右边是mse取到1,1倍,最左边是mse取到0.9倍,我们不需要从0开始的刻度

ax.set_yticks(np.arange(len(mse)))

ax.set_xlabel('MSE') # x轴的名字

# ax.invert_yaxis() # 把y上面这个轴命名好,然并卵

ax.set_yticklabels(x_lables) # 用x_lables里面的这些东西作y的命名

plt.show()1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

可以看出 随机森林回归得到的分数是最好的(MSE越低,效果越好),

这可能伴随着过拟合的风险,要加以注意。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值