自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(210)
  • 资源 (38)
  • 收藏
  • 关注

原创 Coursera 吴恩达《Machine Learning》课堂笔记 + 作业

记录一下最近学习的资源,方便寻找:Github 上已经有人把作业整理成为 Python 的形式了。有 .py 和 .ipynb 两种格式。https://github.com/nsoojin/coursera-ml-pyhttps://github.com/kaleko/CourseraML参考博客:https://blog.csdn.net/red_stone1/article/details/90044363吴恩达deep learning.ai专项课程精炼笔记全部汇总https

2020-10-06 17:17:30 48

原创 jupyter常见使用技巧之如何打开指定文件夹/ 查看修改默认文件目录

jupyter如何打开指定文件夹下的.ipynb?第一种方法:不需要修改默认文件夹即可打开需要的文件只需1.打开anaconda prompt2.然后在anaconda prompt中输入jupyter notebook+文件所在目录 即可,如我想打开只需要打开anaconda prompt 输入 jupyter notebook F:\su\study\知识追踪学习路线\dkt-master这样就在浏览器中打开第二种(命令行)1.win+R启动运行,弹出的对话框输入

2020-09-21 22:26:12 629

原创 Knowledge Tracing Project数据分析/挖掘

本项目我们遵循以下工作流程。1项目概况2、数据理解3、头脑风暴4、数据清理5、探索性数据分析6、特色工程7、功能选择8、型号9、选型10、参数微调11。进一步改进项目概述目标是根据学生之前的学习经验预测学生是否能够正确回答下一个问题。数据集包含了学生以前的学习经历(观看的讲座和回答的问题)、描述和讲座的信息。这是一个时间序列预测问题。评估指标:预测概率与观测目标之间ROC曲线下的面积。数据理解3解决问题需要哪些信息?–问题是什么?–用户是否看过相关课件?–用户是否回答了相

2020-11-29 13:52:17 1

原创 Image Processing in the Spatial Domain 空间域图像处理

背景二维卷积在二维卷积中,我们通过卷积核对输入图像进行卷积来计算输出图像。卷积核是一个小尺寸的矩阵,例如3×3、5×5或5×7像素;这个矩阵中的项称为卷积系数。在二维相关中,我们通过将输入图像与相关掩码相关联来计算输出图像。相关掩码是一个小矩阵,其条目称为相关系数。如下例所示,二维卷积和二维相关非常密切。具有卷积核h的图像的二维卷积与具有相关掩模m的图像的二维相关是相同的,m通过将h旋转180°来获得,考虑输入图像f和卷积核h,如下所示:我们将计算由f和h的二维卷积产生的输出图像

2020-11-26 15:11:00 10

原创 深度学习之Bias/Variance偏差、方差

偏差(Bias)和方差(Variance)是机器学习领域非常重要的两个概念和需要解决的问题。在传统的机器学习算法中,Bias和Variance是对立的,分别对应着欠拟合和过拟合,我们常常需要在Bias和Variance之间进行权衡。而在深度学习中,我们可以同时减小Bias和Variance,构建最佳神经网络模型。偏差(Bias) 欠拟合 方差(Variance) 过拟合 猫识别问题中的方差和偏差bias和variance Train set error..

2020-11-25 20:24:33

原创 ERROR conda.core.link:_execute(502): An error occurred while installing package

记录错误ERROR conda.core.link:_execute(502): An error occurred while installing package:http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge::backcall-0.2.0-pyh9f0ad1d_0看到网上很多出现ERROR conda.core.link:_execute(502)一般都是说environment.txt文件有中文名然而没有

2020-11-21 15:04:32 22

原创 数据清洗案例

https://mp.weixin.qq.com/s/jNoXHO4qU34gcha4zOGRLAhttps://mp.weixin.qq.com/s/jgMIKy8Dz6KYpsKkyHDdGg

2020-11-21 14:54:02 12

原创 pandas数据预处理 缺失值

缺失值的分类按照数据缺失机制可分为: 可忽略的缺失 完全随机缺失(missing completely at random, MCAR),所缺失的数据发生的概率既与已观察到的数据无关,也与未观察到的数据无关 随机缺失(missing at random, MAR),假设缺失数据发生的概率与所观察到的变量是有关的,而与未观察到的数据的特征是无关的。 不可忽略的缺失(non-ignorable missing ,NIM) 或非随机缺失(not missin..

2020-11-21 14:50:12 19

原创 Deep Knowledge Tracing(DKT)具体实现

问题陈述传统的评价方法,如考试和考试,只允许在考试结束后对学生进行评价。因此,这些方法不允许在课程开始时对学生应具备或在课程中学习的所有预期能力进行完整的预先评估。另一方面,预测模型能够根据历史数据预测未来的信息。从学习管理系统(LMS)收集的数据可以作为训练模型的基础,该模型能够预测学生是否有足够的知识来回答尚未发现的问题,这一问题被称为知识跟踪(KT)。因此,可以训练LSTM网络,以找出数据集中已解决问题之间的依赖关系,并用它来预测学生正确回答他尚未看到的考试问题的概率。综上所述,解决选择..

2020-11-21 10:56:14 31

原创 matlib实现矩阵分解 及求方程组的解 范数

矩阵分解%矩阵的LR分解 方阵A是非奇异的clear;A = [2,1,4;4,3,13;2,2,20];format rat[L,U]=lu(A)% [L,U,P]=lu(A)%%%矩阵QR分解 [Q,R]=qr(A) R为上三角矩阵clear;clcA=[0 4 1;1 1 1;0 1 2];[Q,R,e]=qr(A);%%%矩阵的奇异值分解clear,clcA = [1,1;0,0;1,1];[U,S,V] = svd(A) %返回一个与A同大小的对角矩阵S,.

2020-11-17 10:34:34 13

原创 matlib 多种方法实现图像旋转不使用imrotate函数

原理方法很棒https://blog.csdn.net/qq_41140138/article/details/104737705方法一function g = rotate_image1(f, theta)[M,N]=size(f);theta=theta*pi/180;% img_rotate = ones(M,N); T= [cos(theta),sin(theta);-sin(theta),cos(theta)];%旋转变换 % 计算显示完整图像需要的画布大小hh = f

2020-11-15 17:22:20 25

原创 java操作word方式 设置国内镜像命令

java操作word方式还有(个人认为通过jacob最好,自己可以扩展,网上除poi之外几乎全是java-com技术实现的): (1):Apache POI - Java API To Access Microsoft Format Files(http://poi.apache.org/);对word处理不够强处理Excel功能可以,但是全是通过java完成的,不需 要com组件支持; (2):java2word 是一个在java程序中调用 MS Office Word 文档的组...

2020-11-15 13:38:49 29

原创 Python 一维及多维数组及基本操作

2. 创建一般的多维数组 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 importnumpy as np a=np.array([1,2,3], dtype=int)# 创建1*3...

2020-11-14 15:49:37 23

原创  决策树(Decision Tree)原理及实现

决策树(Decision Tree)原理及实现一、算法简介1.1 基本模型介绍决策树是一类常见的机器学习方法,可以帮助我们解决分类与回归两类问题。模型可解释性强,模型符合人类思维方式,是经典的树形结构。分类决策数模型是一种描述对实例进行分类的树形结构。决策树由结点 (node) 和有向边 (directed edge) 组成。结点包含了一个根结点 (root node)、若干个内部结点 (internal node) 和若干个叶结点 (leaf node)。内部结点表示一个特征或属性,叶结点表.

2020-11-12 16:45:23 204 1

原创 机器学习 注意力 笔记资料贴

Self-Attention与Transformer详解https://zhuanlan.zhihu.com/p/47282410 写的非常详细https://jalammar.github.io/illustrated-transformer/

2020-11-11 20:56:52 13

原创 图像的几何变换maketform imtransform imresize imcrop

背景几何变换是将图像像素从一个位置映射到另一个位置。 几何变换有五种常见类型:剪切变换、平移变换、缩放变换、旋转变换和投影变换。 它们如图4.1所示。 在该图中,原始图像显示在(A)中,而变换后的图像显示在(B)到(F)中。几何变换可以表示为原始像素位置和新像素位置之间的矩阵方程。设f是输入图像。设g是对图像f应用几何变换时产生的输出图像。设(w,z)是输入图像f中的像素位置,该位置的像素值表示为f(w,z)。设(x,y)是输出图像g中对应的像素位置,该位置的像素值表示为g(x,y)...

2020-11-05 12:30:47 23

原创 知识追踪方法比较

•DKT:Deep knowledge tracing. In Advances in neural information processing systems.这是一种开创性的方法,它使用单层LSTM模型来预测学生的表现。在我们的DKT实现中,我们使用规范裁剪和提前停止来提高性能,•SAKT:A Self-Attentive model for Knowledge Tracing. arXiv preprint arXiv:1907.06837该模型利用自我注意机制[37]为先前回答的练习分配权重,

2020-10-29 19:10:27 65

原创 知识追踪入门系列-论文资料汇总

Paper : 知识追踪相关论文下载论文和代码见reference第一个链接Deep Knowledge Tracing: 首次提出将RNN用于知识追踪,并能够基于复杂的知识联系进行建模(如构建知识图谱)Deep Knowledge Tracing and Dynamic Student Classification for Knowledge Tracing(DKT-DSC)跟第一篇论文比较相似,都用到了 LSTM,不同的是这篇论文还考虑了将学生进行分类,在进行预测的时候也有不同,...

2020-10-25 19:32:27 57 1

原创 最新RNN相关模型

最近在看最新RNN相关模型 找到很多论文Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network递归神经网络(RNN)和长短期记忆(LSTM)网络的基础要点•递归神经网络(RNN)的定义来自延迟微分方程。 •RNN展开技术在形式上被证明是近似无限序列。 •可以从RNN逻辑上合理化长短期内存网络(LSTM)。 •提供了完全推导LSTM训练方程式的系统图...

2020-10-22 10:43:25 66

原创 自然语言处理之语料库

语料库定义 :语料库(corpus)就是存放语言材料的仓库(语言数据库)语料库技术的发展早期:语料库在语言研究中被广泛使用:语言习得、方言学、语言教学、句法和语义、音系研究等沉寂时期:1957年Chomsky 的《句法理论》及其以后一系列著作的发表,根本改变了语料库语言学的发展状况。Chomsky 及其转换生成语法学派批判早期的语料库研究方法复苏与发展时期:特征之一:第二代语料库相继建成1983年英国Lancaster 大学建成Lancaster-Oslo / Berge

2020-10-20 18:59:37 65

原创 知识追踪模型的应用

背景 MOOC近年来,随着在线学习系统在教育环境中越来越普及,在线学习人数越来越多,教育者不可能追踪每一个学习者的知识状态并提供个性化的学习指导;在线学习系统中的知识需要学习者通过各种冗余信息自我查找,导致学习资源和学习路径多样化但却不一定有效。从教育研究的角度来看,在线学习系统提供了几个重要的优点,最显著的是留下学习者详细的学习轨迹,提供了调查不同轨迹下学习者行为效能的条件目的:个性化推荐为了解决上述问题,一个可以自动追踪学习者知识掌握情况的知识追踪模型对教育者和学习者都是必要的,因为它既

2020-10-20 17:05:20 115

原创 神经网络、图像分类、卷积网络等,论文推荐附论文地址

喜欢收集资源,一起分享交流具体见https://www.tinymind.cn/articles/4265循环神经网络部分No33 QRNN模型论文:在RNN模型的cell里,如果还只知道LSTM和GRU。那就太low了。快来补补吧:如果想更多了解QRNN,可以参考以下论文:http://arxiv.org/abs/1611.0157No34 SRU模型论文:接着来,各种RNN的Cell。又漂亮,又好吃!SRU单元在本质上与QRNN单元很像。从网络构建上看,SRU单.

2020-10-20 16:31:35 10

原创 深度学习——优化器算法Optimizer详解

资料整理贴深度学习——优化器算法Optimizer详解(BGD、SGD、MBGD、Momentum、NAG、Adagrad、Adadelta、RMSprop、Adamhttps://www.cnblogs.com/guoyaohua/p/8542554.html博客写的非常好加上了Python实现https://zhuanlan.zhihu.com/p/79981927...

2020-10-20 16:28:42 9

原创 matlib实验一 数字图像处理+函数调用笔记

1.Write and test a MATLAB script file called lab1_plot.m to plot the function f(x) = (sinx)3 + 2cosx in the interval [-π, π]. Remember to include annotations (e.g. axis labels, title) to your plot.fplot('sin(x).^3+2*cos(x)',[-pi,pi])title('f(x) = sin^3

2020-10-16 13:48:45 18

原创 PyTorch学习系统之 scatter() 函数详解 one hot 编码

torch.Tensor.scatter_scatter() 和 scatter_() 的作用是一样的,只不过 scatter() 不会直接修改原来的 Tensor,而 scatter_() 会torch.Tensor.scatter_()是torch.gather()函数的方向反向操作。两个函数可以看成一对兄弟函数。gather用来解码one hot,scatter_用来编码one hot。PyTorch 中,一般函数加下划线代表直接在原来的 Tensor 上修改scatter_(dim

2020-10-16 11:38:35 61

原创 torch.unsqueeze和 torch.squeeze() 详解

1. torch.unsqueeze 详解torch.unsqueeze(input, dim, out=None)作用:扩展维度返回一个新的张量,对输入的既定位置插入维度 1注意: 返回张量与输入张量共享内存,所以改变其中一个的内容会改变另一个。如果dim为负,则将会被转化dim+input.dim()+1参数: tensor (Tensor) – 输入张量 dim (int) – 插入维度的索引 out (Tensor, optional) – 结果张量A dim valu

2020-10-16 10:40:28 71

原创 argparse 命令行选项、参数和子命令解析器

最近看到很多论文代码都是用解析器写的argparse 命令行选项、参数和子命令解析器argparse 模块可以让人轻松编写用户友好的命令行接口。程序定义它需要的参数,然后 argparse 将弄清如何从 sys.argv 解析出那些参数。 argparse 模块还会自动生成帮助和使用手册,并在用户给程序传入无效参数时报出错误信息。创建一个解析器使用 argparse 的第一步是创建一个 ArgumentParser 对象:parser = argparse.ArgumentParse.

2020-10-15 20:06:41 31

原创 tf.expand_dims用法详解

看官方讲解一些博客感觉一直不是很懂,下面是我的个人理解结合官方文档,有问题欢迎指出tf.expand_dimstf.expand_dims( input, axis=None, name=None, dim=None)给定的张量input,该操作插入尺寸索引处的1维axis的input的形状。维度索引axis从零开始;如果您为其指定负数,axis则从末开始算起。如果要将批次尺寸添加到单个元素,此操作很有用。例如,如果您有一个shape的图像[height, width, chan..

2020-10-11 14:55:13 113

原创 Jupyter Notebook导入和删除虚拟环境 超详细

(base) C:\Users\wei> conda env list# conda environments:#base * F:\Anaconda3pyexercise F:\Anaconda3\envs\pyexercisepytorch F:\Anaconda3\envs\pytorchtensoflow1 F:\Anaconda3\envs\tenso...

2020-10-11 14:12:18 163 1

原创 代码学习之Python冒号详解

最近看代码发现对冒号用法理解不够透彻,记录学习一下:1.冒号的用法1.1 一个冒号a[i:j]这里的i指起始位置,默认为0;j是终止位置,默认为len(a),在取出数组中的值时就会从数组下标i(包括)一直取到下标j(不包括j)在一个冒号的情况下若出现负数则代表倒数某个位置a[i:-j]这里就是从下标i取到倒数第j个下标之前(不包括倒数第j个下标位置的元素)1.2 两个冒号a[i:j:h]这里的i,j还是起始位置和终止位置,h是步长,默认为1若i/j位置

2020-10-11 13:26:56 72

原创 tf.gather()用法详解

tf.gather(params, indices, validate_indices=None, axis=None, batch_dims=0, name=None )请注意,在CPU上,如果找到超出范围的索引,则会返回错误。在GPU上,如果找到越界索引,则将0存储在相应的输出值中。另请参阅tf.gather_nd。import numpy as npimport tensorflow as tflogits = [0,2,2,2,2,3,4,5,6,7,8,9]...

2020-10-11 12:59:26 151

原创 PyTorch学习系列之PyTorch:nn和PyTorch:optim优化

PyTorch:nn在构建神经网络时,我们经常考虑将计算分为几层,其中一些层具有可学习的参数,这些参数将在学习过程中进行优化。在TensorFlow,像包Keras,TensorFlow修身,和TFLearn提供了原始计算图表,是构建神经网络有用的更高层次的抽象。在PyTorch中,该nn程序包达到了相同的目的。该nn软件包定义了一组Modules,它们大致等效于神经网络层。模块接收输入张量并计算输出张量,但也可以保持内部状态,例如包含可学习参数的张量。该nn软件包还定义了一组有用的损失...

2020-10-10 10:47:50 27

原创 tensflow学习小知识tf.train.exponential_decay

tf.compat.v1.train.exponential_decay将指数衰减应用于学习率。tf.compat.v1.train.exponential_decay( learning_rate, global_step, decay_steps, decay_rate, staircase=训练模型时,通常建议随着训练的进行降低学习率。此函数将指数衰减函数应用于提供的初始学习率。它需要一个global_step值来计算衰减的学习率。您只需传递一个TensorFlow变量,...

2020-10-09 14:28:56 15

原创 分类回归模型评估常见方法及ROC AUC

目录模型评估常见方法ROC和AUC定义sklearn计算ROC具体实现计算ROC需要知道的关键概念1. 分析数据2. 针对score,将数据排序3. 将截断点依次取为score值3.1 截断点为0.1sklearn.metrics中的评估方法介绍模型评估常见方法分类模型评估:指标 描述 Scikit-learn函数 Precision 精准度 from sklearn.metrics import precision_score

2020-10-06 19:30:58 137

原创 Python学习系列之类的定义、构造函数 def __init__

python def __init__(self, name等多参数), def __init__(self)常见的两种类的定义方式如下#第一种class Student: def __init__(self):#两者之间的区别 self.name = None self.score = None##第二种 def __init__(self, name, score): self.name = name

2020-10-05 14:25:29 141 1

原创 MATLAB图像处理基本操作(1)

从文件读取图像a)读取图像文件要读取图像文件,请使用imread函数并指定文件名。 本示例读取一个名为peppers.png的图像,并将其存储在名为a的数组中:a = imread('peppers.png');b)显示图像,imshow函数imshow(a); %显示图像一个可用于显示图像的功能是imagesc。 imagesc(a); %将比例数组缩放到整个范围[0,255]并显示它调用imshow后,我们可以通过键入以下内容来找到鼠标位置的像素值:impixelinfo...

2020-10-03 22:51:38 99

原创 知识追踪常见建模方法之IRT项目反应理论

目录A.项目反应理论(IRT item response theory)概述历史发展特点模型A.项目反应理论(IRT item response theory)概述IRT理论即项目反应理论(Item Response Theory, IRT),又称题目反应理论、潜在特质理论(Item Response Theory)是一系列心理统计学模型的总称。IRT是用来分析考试成绩或者问卷调查数据的数学模型。这些模型的目标是来确定的潜在心理特征(latent trait)是否可以通过测

2020-10-03 19:20:06 204

原创 知识跟踪的深度知识跟踪和动态学生分类 Deep Knowledge Tracing and Dynamic Student Classification for Knowledge Tracing

Deep Knowledge Tracing and Dynamic Student Classification for Knowledge Tracing(译)知识跟踪的深度知识跟踪和动态学生分类摘要在智能辅导系统(ITS)中,对学生在学习过程中的知识状态进行追踪的研究已经进行了数十年,以提供更多支持性的学习指导。在本文中,我们提出了一种新颖的知识追踪模型i)捕获学生的学习能力,并以固定的时间间隔将学生动态分配给具有相似能力的不同群体, ii)并且将这些信息与称为深度知识追踪的递归神经网

2020-10-03 18:13:22 220

原创 matlib入门学习系列之图像

显示图像图像数据您可以将二维数值数组显示为图像。在图像中,数组元素决定了图像的亮度或颜色。例如,加载一个图像数组及其颜色图:>> load durer>> whos Name Size Bytes Class Attributes X 648x509 2638656 double caption 2x28

2020-09-30 20:17:37 16

原创 matlib入门学习系列之基本绘图函数

目录创建绘图在一幅图形中绘制多个数据集指定线型和颜色绘制线条和标记将绘图添加到现有图形中图窗窗口在一幅图窗中显示多个绘图控制轴保存图窗保存工作区数据创建绘图plot函数具有不同的形式,具体取决于输入参数。 如果y是向量,plot(y)会生成y元素与y元素索引的分段线图。 如果有两个向量被指定为参数,plot(x,y)会生成y对x的图形。 使用冒号运算符创建从0至2π的x值向量,计算这些值的正弦,并绘...

2020-09-30 19:56:40 27

口红-data.xlsx|口红-data.xlsx

口红销量预测 美容界曾有一个著名的调查:“假如你只能拥有一个化妆品,你想要的的是什么产品?”95%以上的亚洲女性都选择了口红。为了让商家生产出更符合消费者的口红,提高其销售量,本题提供在京东网站上爬取的1600多条销售数据。在这诸多影响口红销量的影响因素中,分析哪些因素对口红销量至关重要,根据这些因素预测商家的销售量。

2020-11-22

心脏病的预测 原始数据 cleveland.data|cleveland.data

心脏病的预测 心脏病是人类健康的头号杀手,每年全世界有1/3的死亡人口是由心脏病引起的,在我国每年有几十万人死于心脏病,通过体检数据建立一套心脏病预测系统是非常实用的。 本题研究的数据是真实的心脏病患者体检数据,为了能更好的预测,请分析数据(按照heart-disease.names中说明,用76个特征中的14个指定特征构建模型。以cleveland.data作为训练数据,以new.data作为测试数据),针对预测的目标及要求,构建合适的模型。 请根据提供的数据实现以下目标:

2020-11-22

heart-disease.names|心脏病预测.zip

心脏病是人类健康的头号杀手,每年全世界有1/3的死亡人口是由心脏病引起的,在我国每年有几十万人死于心脏病,通过体检数据建立一套心脏病预测系统是非常实用的。 一共两数据heart-disease.names cleveland.data new.data

2020-11-22

混凝土的强度预测 原始数据|concrete.csv

混凝土的强度预测 在工程领域中,对建筑材料的性能有精确的估计至关重要。这些估计是必需的,以便制定安全准则来管理用于楼宇、桥梁和道路建设中的材料。 估计混泥土的强度是一个特别有趣的挑战。尽管混泥土几乎要用于每一个建设项目,但由于它各种成分的使用以复杂的方式相互作用,所以它的性能变化很大。因此,很难精确地预测它最终产品的强度

2020-11-21

题目3 电商产品评论数据情感分析.zip|题目3 电商产品评论数据情感分析.zip

题目3: 电商产品评论数据情感分析 数据数据 数据 随着网上购物的流行,人们对于网上购物的需求越来越高。了解更过消费者的心声对于电商平台来说也变得越来越有必要,其中非常重要的方式就是对消费者的文本评论数据进行内在信息的数据挖掘分析。

2020-11-20

题目5 基于水色图像的水质评价 原始数据|题目5 基于水色图像的水质评价.zip

基于水色图像的水质评价的原始数据 有经验的从事渔业生产的从业者可通过观察水色变化调控水质,以维持养殖水体生态系统中浮游植物、微生物类、浮游动物等合理的动态平衡。数字图像处理技术为计算机监控技术在水产养殖业的应用提供更大的空间

2020-11-20

数据挖掘课程设计 原始数据包|original_data.xls

题目1:家用电器用户行为分析与事件识别 数据 居民在使用家电过程中,会因地区气候、不同区域、用户年龄性别差异,形成不同的使用习惯。家电企业若能深入了解不同用户群的使用习惯,开发新功能,就能开拓新市场。例如,在热水器用户行为分析过程中,用水事件识别是最关键的环节,厂商根据其采集的用户用水数据,分析用户的用水行为特征。 热水器厂商根据洗浴事件识别模型,对不同地区的用户用水进行识别,根据识别结果比较不同客户群体的使用习惯,加深对客户的理解。因此,厂商可以给不同的客户群提供最适合的个性化产品。

2020-11-20

题目2 电子商务网站用户行为分析及服务推荐 数据|题目2 电子商务网站用户行为分析及服务推荐.zip

题目2: 电子商务网站用户行为分析及服务推荐 随着互联网和信息技术的快速发展,用户想要从海量信息中快速准确地寻找到自己感兴趣的信息已经变得越来越困难,在电子商务领域这点显得更加突出。 推荐系统无需用户提供明确的需求,而是通过分析用户的历史行为,从而主动向用户推荐能够满足他们兴趣和需求的信息。在电商领域,推荐技术可以起到以下作用:1)帮助用户发现其感兴趣的物品,节省用户时间、提升用户体验;2)提高用户对电商网站的忠诚度,建立稳定的企业忠实客户群。

2020-11-20

研究生学术英语听说教程 听力资料.txt|研究生学术英语听说教程 王征听力资料.txt

研究生学术英语听说教程 听力音频资料 研究生学术英语听说教程 听力音频资料 1-12 unit economic activities 2 science and technology

2020-09-16

题目4 基于基站定位数据的商圈分析.zip|题目4 基于基站定位数据的商圈分析.zip

: 基于基站定位数据的商圈分析 原始数据 随着个人手机终端的普及,手机移动网络也基本实现了城乡空间区域的全覆盖。根据手机信号在真实地理空间上的覆盖情况,将手机用户时间序列的手机定位数据,映射至现实的地理空间位置,即可完整、客观地还原出手机用户的现实活动轨迹,从而挖掘得到人口空间分布与活动联系的特征信息。

2020-11-20

874参考用书 数据结构习题解析|temp.txt

华师874参考用书 数据结构 数据结构(修订版)严蔚敏、陈文博课后习题整理文件 第二章线性表 第三章排序 打包整理方便参考 有其他问题可以私信

2020-10-06

2020年华师计算机复试资料整理|复试笔记.zip

2020年华师计算机复试资料整理 专业课问答 自我介绍英语topic 面试技巧

2020-10-06

华师874考研题库+模拟题|temp.txt

华师874考研题库 数据结构期末试卷 习题集 经典习题和复习题 C语言题库 练习题等

2020-10-06

华师874一.txt|华师874一.txt

华中师范大学计算机考研资料(1):真题及答案13-20(部分年份不全) 自己整理的复试资料和20年考研录取情况

2020-09-23

9散列表(源程序+文档+说明+总结)

(源程序+文档+说明+总结)【问题描述】 设计散列表实现电话号码查找系统。 【基本要求】 (1)设每个记录有下列数据项:电话号码、用户名、地址; (2)从键盘输入各记录,分别以电话号码和用户名为关键字建立散列表; (3)采用一定的方法解决冲突; (4)查找并显示给定电话号码的记录; (5)查找并显示给定用户名的记录。 【进一步完成内容】 (1)系统功能的完善; (2)设计不同的散列函数,比较冲突率; (3)在散列函数确定的前提下,尝试各种不同类型处理冲突的方法,考察平均查找长度的变化。

2020-06-17

8、停车场管理数据结构课程设计(源程序+文档+说明+总结)

3到4个程序和文档任选 【问题描述】 设有一个可以停放n辆汽车的狭长停车场,它只有一个大门可以供车辆进出。车辆按到达停车场时间的早晚依次从停车场最里面向大门口处停放(最先到达的第一辆车放在停车场的最里面)。如果停车场已放满n辆车,则后来的车辆只能在停车场大门外的便道上等待,一旦停车场内有车开走,则排在便道上的第一辆车就进入停车场。停车场内如有某辆车要开走,在它之后进入停车场的车都必须先退出停车场为它让路,待其开出停车场后,这些车辆再依原来的次序进场。每辆车在离开停车场时,都应根据它在停车场内停留的时间长短交费。如果停留在便道上的车未进停车场就要离去,允许其离去,不收停车费,并且仍然保持在便道上等待的车辆的次序。编制一程序模拟该停车场的管理。

2020-06-17

7文本编辑数据结构课程设计 (源程序+文档+说明+总结)

【问题描述】 功能:输入一页文字,程序可以统计出文字、数字、空格的个数。 静态存储一页文章,每行最多不超过80个字符, 【设计要求】 (1)分别统计出其中英文字母数和空格数及整篇文章总字数; (2)统计某一字符串在文章中出现的次数,并输出该次数; (3)删除某一子串,并将后面的字符前移。 【实现提示】 存储结构使用线性表,分别用几个子函数实现相应的功能; 输入数据的形式和范围:可以输入大写、小写的英文字母、任何数字及标点符号。 输出形式: (1)分行输出用户输入的各行字符; (2)分4行输出"全部字母数"、"数字个数"、"空格个数"、"文章总字数" (3)输出删除某一字符串后的文章;

2020-06-17

6、模拟计算器.算术表达式的求解(源程序+文档+说明+总结)

3到4个程序和文档任选【问题描述】 给定一个算术表达式,通过程序求出最后的结果。 【实现要求】 (1)数值:包括整数和实数,数值可带正、负号。 (2)运算符:正号、负号、加、减、乘、除、求模和乘方,其中可以包含括号。 【实现提示】 (1)从键盘输入要求解的算术表达式; (2)采用栈结构进行算术表达式的求解过程; (3)能够判断算术表达式正确与否; (4)对于错误表达式给出提示; (5)对于正确的表达式给出最后的结果;

2020-06-17

5、校园导游程序(源程序+文档+说明+总结)

3到4个程序和文档任选【问题描述】 用无向网表示你所在学校的校园景点平面图,图中顶点表示主要景点,存放景点的编号、名称、简介等信息,图中的边表示景点间的道路,存放路径长度等信息。要求能够回答有关景点介绍、游览路径等问题。 【设计要求】 设计要求如下: (1)设计出你设定学校的校园景点平面图; (2)查询各景点的相关信息; (3)查询图中任意两个景点间的最短路径。 (4)增加、删除、更新有关景点和道路的信息。

2020-06-17

4、哈夫曼编译码器问题

3到4个程序和文档任选 :【问题描述】 利用哈夫曼编码进行信息通讯可以大大提高信道利用率,缩短信息传输时间,降低传输成本。但是,这要求在发送端通过一个编码系统对待传数据预先编码;在接收端将传来的数据进行译码(复原)。 【实现要求】 系统应具有以下功能: (1)初始化(Initialization)。从终端读入字符集大小n,及n个字符和m个权值,建立哈夫曼树,并将它存于文件hfmtree中。 (2)编码(Coding)。利用已建好的哈夫曼树(如不在内存,则从文件hfmtree中读入)对文件tobetrans中的正文进行编码,然后将结果存入文件codefile中。 (3)译码(Decoding)。利用已建好的哈夫曼树将文件codefile中的代码进行译码,结果存入文件textfile中。 (4)用下表给出的字符集和频度的实际统计数据建立哈夫曼树,并实现以下报文的编码和译码:“THIS PROGRAM IS MY FAVORITE”。

2020-06-17

药店的药品销售统计系统(排序应用)(源程序+文档+说明+总结)

【问题描述】 设计一系统,实现医药公司定期对销售各药品的记录进行统计,可按药品的编号、单价、销售量或销售额做出排名。 【实现要求】 在本设计中,首先从数据文件中读出各药品的信息记录,存储在顺序表中。各药品的信息包括:药品编号、药名、药品单价、销出数量、销售额。药品编号共4位,采用字母和数字混合编号,如:A125,前一位为大写字母,后三位为数字,按药品编号进行排序时,可采用基数排序法。对各药品的单价、销售量或销售额进行排序时,可采用多种排序方法,如直接插入排序、冒泡排序、快速排序,直接选择排序等方法。在本设计中,对单价的排序采用冒泡排序法,对销售量的排序采用快速排序法,对销售额的排序采用堆排序法。

2020-06-17

1运动会分数统计问题(源程序+文档+说明+总结)

3到4个程序和文档任选【问题描述】 参加运动会有n个学校,学校编号为1„„n。比赛分成m个男子项目,和w个女子项目。项目编号为男子1„„m,女子m+1„„m+w。不同的项目取前五名或前三名积分;取前五名的积分分别为:7、5、3、2、1,前三名的积分分别为:5、3、2;哪些取前五名或前三名由学生自己设定。(m<=20,n<=20)。 【实现要求】 (1)可以输入各个项目的前三名或前五名的成绩; (2)能统计各学校总分; (3)可以按学校编号、学校总分、男女团体总分排序输出; (4)可以按学校编号查询学校某个项目的情况;可以按项目编号查询取得前三或前五名的学校; (5)数据存入文件并能随时查询; (6)输入数据形式和范围:可以输入学校的名称,运动会项目的名称

2020-06-17

学生成绩管理系统(源程序+文档+说明+总结)

学生成绩管理系统(有3到4个程序 可以任选一个) 试编写一管理系统,要求如下: (1)实现对两个文件数据进行合并,生成新文件3.txt (2)抽取出三科成绩中有补考的学生并保存在一个新文件4.txt (3)对合并后的文件3.txt中的数据按总分降序排序(至少采用两种排序方法实现) (4)输入一个学生姓名后,能查找到此学生的信息并输出结果(至少采用两种查找方法实现) (5)要求使用结构体,链或数组等实现上述要求.

2020-06-17

《多媒体集成课程设计》.zip

运用所学的多媒体集成理论知识和制作技术,采用Authorware,结合Photoshop、Flash、Premiere等素材处理工具,完成一个具有交互性的多媒体应用程序或网页。具体见https://blog.csdn.net/sereasuesue/article/details/106301688

2020-05-27

2020考研复试口语常考话题.docx

报考华师已经上岸整理往年英语topic和一些常考话题 以及2020复试口语,今年问题比较常规问了家乡,喜欢的书、电影 规划报考学校等 辛苦整理

2020-05-20

常见人脸识别数据库(YALE人脸数据库+YALE人脸数据库b)

常见人脸识别数据库YALE人脸数据库(美国,耶鲁大学)http://cvc.cs.yale.edu/cvc/projects/yalefaces/yalefaces.html由耶鲁大学计算视觉与控制中心创建,包含15位志愿者的165张图片,包含光照、表情和姿态的变化。Yale人脸数据库中一个采集志愿者的10张样本,相比较ORL人脸数据库Yale库中每个对象采集的样本包含更明显的光照、表情和姿态以及遮挡变化。4. YALE人脸数据Bhttps://computervisiononline.com/dataset/1105138686包含了10个人的5850幅在9种姿态,64种光照条件下的图像。其中的姿态和光照变化的图像都是在严格控制的条件下采集的,主要用于光照和姿态问题的建模与分析。由于采集人数较少,该数据库的进一步应用受到了比较大的限制。

2020-04-14

lfw人脸数据集-人脸识别的常用测试集

LFW人脸数据库的简介 LFW (Labled Faces in the Wild)人脸数据集:是目前人脸识别的常用测试集,其中提供的人脸图片均来源于生活中的自然场景,因此识别难度会增大,尤其由于多姿态、光照、表情、年龄、遮挡等因素影响导致即使同一人的照片差别也很大。并且有些照片中可能不止一个人脸出现,对这些多人脸图像仅选择中心坐标的人脸作为目标,其他区域的视为背景干扰。LFW数据集共有13233张人脸图像,每张图像均给出对应的人名,共有5749人,且绝大部分人仅有一张图片。每张图片的尺寸为250X250,绝大部分为彩色图像,但也存在少许黑白人脸图片。

2020-04-14

dlib-19.7.0-cp36-cp36m-win_amd64.whl

dlib文件和安装步骤 dlib-19.7.0-cp36-cp36m-win_amd64.whl 也可以见https://blog.csdn.net/sereasuesue/article/details/105280334

2020-04-02

FVC2004指纹数据集DB1-4.zip

详情见https://mp.csdn.net/console/editor/html/105053719 四个不同的指纹数据库(DB1、DB2、DB3和DB4)

2020-03-23

6数据结构模拟计算器.zip

模拟计算器 完整报告 总结 代码 说明 【问题描述】 给定一个算术表达式,通过程序求出最后的结果。 【实现要求】 (1)数值:包括整数和实数,数值可带正、负号。 (2)运算符:正号、负号、加、减、乘、除、求模和乘方,其中可以包含括号。 【实现提示】 (1)从键盘输入要求解的算术表达式; (2)采用栈结构进行算术表达式的求解过程; (3)能够判断算术表达式正确与否; (4)对于错误表达式给出提示; (5)对于正确的表达式给出最后的结果;

2020-02-03

数据结构1.zip 完整文档+代码

任务:参加运动会有n个学校,学校编号为1……n。比赛分成m个男子项目,和w个女子项目。项目编号为男子1……m,女子m+1……m+w。不同的项目取前五名或前三名积分;取前五名的积分分别为:7、5、3、2、1,前三名的积分分别为:5、3、2;哪些取前五名或前三名由学生自己设定。(m<=20,n<=20),按要求实现相应的数据输入、查询、计分等功能

2020-02-03

人机交互大作业.zip

文档预览见https://blog.csdn.net/sereasuesue/article/details/103754895 完整文档+工程文件

2019-12-29

Javaweb大作业文档.docx

https://blog.csdn.net/sereasuesue/article/details/103753780

2019-12-29

Javaweb大作业代码

文档预览见 https://blog.csdn.net/sereasuesue/article/details/103753780

2019-12-29

c#实验打包下载 c#Test1-5.zip

实验一 编写一个Windows应用程序,计算n!n从键盘输入。 要求:利用Textbox输入n,利用for语句实现阶乘的运算,利用只读的Textbox输出n的阶乘。 实验2(1)构造一个类,可以分别对任意多个整数、小数或字符串进行排序。 实验3编写一个程序,计算两个指定年份之间的闰年并输出,运行界面如图6.5所示。 要求:利用组合框选择或输入起止年份,起始年份不能大于终止年份;利用列表框输出闰年;窗体左下角显示当前的日期和时间。

2019-12-27

c#实验一源代码 使用软件VS

上机练习题 (1)编写一个Windows应用程序,计算n!,n从键盘输入。 要求:利用Textbox输入n,利用for语句实现阶乘的运算,利用只读的Textbox输出n的阶乘。

2019-12-27

数据挖掘大作业基站.zip

运用所学的数据挖掘应用知识,基于Python编程环境,设计文档内容包括:数据预处理、模型构建、代码实现、结果分析。包括源代码和设计文档

2019-12-25

数据挖掘设计.zip

数据分析 数据挖掘课程设计 源代码+提交文档 航空公司客户价值分析数据挖掘设计文档 文档经过查重不会和网上有很大重复

2019-12-25

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除