如何简单清晰地描述 CAPM 在投资学中的运用,以及 CAL、CML 和 SML 的关系和区别?
2018-09-21
【姚岑卓的回答(41票)】:
想深入了解CML和SML,我们首先得先知道它们是怎么来的。故此文先对其来源进行说明,再回答此题。结论将摆在后方。
来源篇:
CML (Capital Market Line):
假设这个世界有且仅有两种风险资产(资产1、资产2),各自的期望收益率、各自的风险及相关系数你都已知。当然,你可以得到所有可能投资方式的期望收益和方差。以期望收益为纵坐标,标准差为横坐标画出来,即一条曲线。
图中两种资产分别为IBM股票与沃尔玛股票,红点标注为40%资产投入IBM股票与60%资产投入沃尔玛股票中的期望收益与标准差。
Image Source: Principles of Corporate Finance (Ninth Edition) Slides by Matthew Will
一般说来,如果这个世界有很多种风险资产且所有信息已知时,图像便变成了一个域,即图中阴影部分。而事实上,我们只会选择图中粉红色线段部分,因为在相同横坐标的情况下(风险相同的情况下),我们会选择期望收益最高的资产组合(即纵坐标最大)。
图中假设有10种风险资产,分别用黑色菱形标志。灰色面积为所有可能资产组合。
Image Source: Principles of Corporate Finance (Ninth Edition) Slides by Matthew Will
更一般而言,现实生活中会存在无风险资产(如:银行存钱)。如果当我们引入无风险资产,我们会期望投资这样的资产组合,当风险相同时,期望收益最大。于是,我们让从无风险资产的点引申的射线与上图中粉红色的边相切。
图中rf点即为无风险资产,T是上图中的粉红色曲线,S为相切的点(有效资产)。红色直线为CML,在S左侧资产需要存钱,在S右侧资产需要从银行借钱。
Image Source: Principles of Corporate Finance (Ninth Edition) Slides by Matthew Will
因此,这即是CML,有效资产S与无风险资产的组合。
表示为
。
SML (Security Market Line): (数学知识要求较高,看不懂可以先略过看后面的结论。)
假设我们构造一个资产组合,其中有α份资产i(待求资产),还有(1-α)份资产S(如上定义)。那么期望收益与方差分别为:
;
意识到,α=0时,即全为S资产,所以此资产曲线必然与CML相交。
而这个点究竟是交点还是切点?答案:一定是切点。否则,将会与CML定义相背离。因为CML需要与T相切,而i一定在T的边界或右下角。
既然是切点,用数学化的语言表达,即此资产组合在α=0(S)点的斜率,等于CML的斜率。即
。
于是,
。
整理即是SML:
。
结论篇:
结论:CML用来衡量资产组合的有效性(efficiency),SML用来衡量资产是否被正确定价(fairly priced)。
CML(Capital Market Line):
Image Source:Capital market line
CML是在风险资产与无风险资产都存在的情况下,以期望收益率和标准差为坐标的射线。
射线上方不存在任何投资可能,射线上存在着有效投资,射线下方所有点均为非有效投资,但其仍然可能被投资来构造有效投资。
于是我们利用衍生出的Sharpe Index来判断资产是否有效(efficiency)
Sharpe Index:
。
若Sharpe Index与Sharpe Ratio(CML的斜率)相等或极其相近,我们说资产是有效的或近乎有效的。
若Sharpe Index远远小于Sharpe Ratio(CML的斜率),我们说资产不是有效的。
SML(Security Market Line):
Image Source:Security market line
SML是建立在CML基础上,以期望收益率与beta(风险敏感性)为坐标的直线(可向左边延伸,即beta<0)。
射线上方下方与射线上均可有投资可能,其存在不违背任何定义或假设。
同样,我们利用衍生出的Jensen"s Index来判断资产是否正确定价(fairly priced)
Jensen"s Index:
。
若Jensen"s Index大于零,即点落在SML上方,实际收益率比理论收益率要高,即价格低估。
若Jensen"s Index小于零,即点落在SML下方,实际收益率比理论收益率要低,即价格高估。
但并非所有Jensen"s Index大于零的都是好投资,因为SML只涉及系统误差,所以其也可能存在较高的非系统误差(specific variance),导致其落在CML下方而成为非有效投资。
【知乎用户的回答(9票)】:
CAPM表示了市场均衡时,证券收益率和证券的系统性风险(systematic risk)间的线性关系。即对于给定资产i,
– 无风险利率
– 资产i的系统性风险
– 资产i的期望收益率
– 市场投资组合期望收益率
这一模型中,Beta被用来衡量该证券或投资组合相对市场的波动性。
当Beta等于1时,该股票或portfolio和市场价格波动一致;
当Beta大于(小于)1时,其价格波动性大于(小于)市场波动性。
因此,运用CAPM,根据资产i的系统风险估值,可估计某一公司股票的期望收益率,从而对其自由现金流进行估值。投资中,这一模型可被用于对公司进行估值,从而确定其股票价格是否被市场高估或低估,根据这一结论决定买入或者卖出该股票。
CAL(Capital Allocation Line) 与CML(CapitalMarket Line)
根据所有可能的风险资产投资组合的期望收益率和方差(风险),我们可以在坐标系中得到一个类似抛物线包裹的点的集合,根据该集合中相同风险最高收益、相同收益最低风险的点,我们可以得到一条有效边界(Efficient frontier)。
CAL即是无风险资产与有效边界上任意风险资产组合组成的投资组合,不同的投资者具有不同的risk attitude,从而得到不同的CAL。
对比不同的CAL,我们会发现相同风险下,斜率高的CAL具有更高的收益。
与有效边界相切那一条CAL,斜率最高,这条与有效边界相切的CAL,即是CML,它是所有CAL中理论上最优的一条。与有效边界相切那一条CAL,斜率最高,这条与有效边界相切的CAL,即是CML,它是所有CAL中理论上最优的一条。
也就是说,如果你和所有的市场参与者一样对投资收益有共同的期望,那么你得到的CAL即是CML。每个投资者得到的CML都是相同的一条。
SML(Security Market Line)
SML是CAPM的图线表达,
表示了期望收益及系统风险
的线性关系。
使用SML,我们可以根据系统风险判断一个资产是否获得了合理的收益,从而判断其价值是否被高估或低估。
比如说,如下图,假设我们估计证券A的Beta值为1.5,如果我们得到它的收益为16%,可以发现它位于SML下方。也就是说,该证券的实际收益低于均衡收益(SML上,因是18%),它的价值目前被高估了。
【知乎用户的回答(2票)】:
CML和SML是两个完全不同的概念,千万不要搞混了,这个在初学者身上容易发生。区别点主要在于:
一、横坐标不同。CML的横坐标表示风险,SML的横坐标表示β系数。
二、斜率不同。CML的斜率是夏普比率,表示单位市场风险的超额收益率。而SML的斜率是市场组合的风险溢价。
三、CML体现总风险,SML只体现系统风险。