常用的排序算法 php,PHP实现常用排序算法

先贴一张分析常见算法时间复杂度和稳定性的图

556becb42789aac414dac0434303df2f.png

很多phper都不会算法,一般的web开发也用不上,但我为什么要学习呢....就是为了遇到不会算法的程序员可以吊打他们!低调~~~

1ad784803e34d6bbb10a549d7c7b5118.png

dc32c21a99c3d21eac58f3aa7452597f.png

1.冒泡排序法

冒泡排序就是把小的元素往前调(或者把大的元素往后调)。注意是相邻的两个元素进行比较,而且是否需要交换也发生在这两个元素之间。

所以,如果两个元素相等,我想你是不会再无聊地把它们俩再交换一下。

如果两个相等的元素没有相邻,那么即使通过前面的两两交换把两个元素相邻起来,最终也不会交换它俩的位置,所以相同元素经过排序后顺序并没有改变。

所以冒泡排序是一种稳定排序算法。

ec4123b7ffc138479ab20ca879b77ee9.png

2.选择排序法

选择排序即是给每个位置选择待排序元素中当前最小的元素。比如给第一个位置选择最小的,在剩余元素里面给第二个位置选择次小的,

依次类推,直到第n-1个元素,第n个元素不用选择了,因为只剩下它一个最大的元素了。

那么,在一趟选择时,如果当前锁定元素比后面一个元素大,而后面较小的那个元素又出现在一个与当前锁定元素相等的元素后面,那么交换后位置顺序显然改变了。

呵呵!比较拗口,举个例子:序列5 8 5 2 9, 我们知道第一趟选择第1个元素5会与2进行交换,那么原序列中两个5的相对先后顺序也就被破坏了。

所以选择排序不是一个稳定的排序算法。

2d64b4a377c2230df0b7f7c884fb1f1f.png

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
健身国际俱乐部系统是一种专为健身俱乐部设计的管理软件,它通过集成多种功能来提高俱乐部的运营效率和服务质量。这类系统通常包含以下几个核心模块: 1. **会员管理**:系统能够记录会员的基本信息、会籍状态、健身历史和偏好,以及会员卡的使用情况。通过会员管理,俱乐部可以更好地了解会员需求,提供个性化服务,并提高会员满意度和忠诚度。 2. **课程预约**:会员可以通过系统预约健身课程,系统会提供课程时间、教练、地点等详细信息,并允许会员根据个人时间表进行预约。这有助于俱乐部合理安排课程,避免资源浪费。 3. **教练管理**:系统可以管理教练的个人信息、课程安排、会员反馈等,帮助俱乐部评估教练表现,优化教练团队。 4. **财务管理**:包括会员卡销售、课程费用、私教费用等财务活动的记录和管理,确保俱乐部的财务透明度和准确性。 5. **库存管理**:对于俱乐部内的商品销售,如健身装备、营养补充品等,系统能够进行库存管理,包括进货、销售、库存盘点等。 6. **数据分析**:系统能够收集和分析会员活动数据,为俱乐部提供业务洞察,帮助俱乐部制定更有效的营销策略和业务决策。 7. **在线互动**:一些系统还提供在线平台,让会员可以查看课程、预约私教、参与社区讨论等,增强会员之间的互动和俱乐部的社区感。 8. **移动应用**:随着移动设备的普及,一些健身俱乐部系统还提供移动应用,方便会员随时随地管理自己的健身计划。 9. **安全性**:系统会确保所有会员信息的安全,采取适当的数据加密和安全措施,保护会员隐私。 10. **可扩展性**:随着俱乐部业务的扩展,系统应该能够轻松添加新的功能和服务,以适应不断变化的市场需求。 健身国际俱乐部系统的选择和实施,需要考虑俱乐部的具体需求、预算和技术能力,以确保系统能够有效地支持俱乐部的运营和发展。通过这些系统的实施,健身俱乐部能够提供更加专业和高效的服务,吸引和保留更多的会员,从而在竞争激烈的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值