噪声dba是什么单位_声音的大小dB,到底是什么单位?

dB是一个表示声音相对强度的比例单位,基于人耳对不同频率的敏感度。通过A率曲线(dBA)进行加权,更准确反映人耳感知的声音大小。傅里叶变换在数字信号处理中用于分析信号频率成分,帮助计算加权后的声音分贝值。实际工程中,使用倍频程进行频率采样,以便计算声音的综合分贝级别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

上来就进入正题。

首先来说说声音的大小的单位dB,dB这个单位其实可以叫没有单位,因为他其实表示的是一种比例关系,给出计算公式:

SPL=20 x log10[ p(e) / p(ref) ]

SPL即是我们平时所说的分贝,p(e)为待测声压,p(ref)为参考声压。也就是说其实我们所说的XXdb都是说的这个声音相对于我们规定的一个声音的大小的比值,并取以10为底的对数再乘以20。之所以采用取对数是因为这个比值可能会非常大。例如正常的人耳能够听到最微弱的声音叫作“听觉阈”,为20微帕斯卡 (μPa) 的压强变化,即20 x 10-6 Pa (百万分之二十 帕斯卡)。而一架太空穿梭机在发出最大马力时能在近距离产生大约 2,000 Pa 或2 x 109μPa的噪音这么大的数值处理起来非常不方便。若采用db的形式,他们差距将只有160db.

所以DB这种单位带来了形式上的简单,但是却同时也在直觉上让我们觉得一个声音从30db测到90db好像很简单,其实仔细算算便能得出,这种差距好像一个两层小楼和珠穆朗玛峰的高矮差距,这2个声音的声压大小相差了1000倍。

明白了上面的道理,再来说说对于声音的大小,在工程上是怎么计算的。

我们知道人耳对于不同频率的声音的感受是不一致的,类似于一个带通滤波器,首先只对20-20000HZ之间的频率有反应,造成同样的声压,频率不同,对人听觉的影响也不同。下图即为人耳对于不同频率的反应程度。注意,单位同样是dB。

图1

此曲线叫做A率曲线,用他测出的分贝值较多dBA,这也是声音用的最多也是最接近人耳的加权方式。

所以综上,要测定一个对于人耳感受有参考意义的声音大小,必须对不同频率的声音进行加权。那么问题来了,怎么得到声音的频率?

关于这个问题,可能很多人都弄不清楚的。一般大家都认为,通过测定麦克风输出信号的有效值,我们就能得到对应的声音大小。但是经过上面的研究我们已经发现,不同声音频率对于我们感受有很大影响,最简单的可以举例超声波和次声波,麦克风可能仍有很大信号,但对于我们人来说,无论多大,可能我们都无法感受到了。若此时显示几十上百db,那对于拿着这个噪声计的人一定是非常莫名其妙的。

又扯了这么多,还是这个问题,如何得到声音的频率?

这设计到大学电信专业的一门课程,名为:数字信号处理,这门课程对于数学的要求如此之高以至于大部分并没有想去看他的欲望。基本只需要记住几个公式就完事了。

但其中有一个我们这需要使用到的数学方法傅里叶变换。

那么什么叫做傅里叶变换?

傅立叶变换在应用中算是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。

他的数学公式是这样的。。好吧,这只是装个B。

作为工程狗基本上不用了解这么详细的数学公式,简单的理解傅里叶变换就是,他可以把一个信号分解为无数个由他的谐波信号相加而成。

即 a=a1+a2+a3+...+an

后面全部是他的谐波信号,及各种频率的波的叠加。

所以当实际的声音信号经过傅里叶变换之后,就可以分解为各种不同频率的声音的叠加,也可以说,真实的声音必然是不同频率的正弦波的叠加。而经过傅里叶变换之后,声音也就由时域转换到了频域。

此时就可以方便的得出各给频率处声音的强度和大小。便能对声音大小进行加权计算了。

由图1可以看出a率加权曲线是连续的,那我们是否需要把每个频率都进行加权?答案是可以,但也没必要。在实际中我们对于频率的选取叫做倍频程。倍频程的中心频率为31.5、63、125、250、500、1K、2K、4K、8K、16KHz,某些要求更精细的条件下可以使用1/3倍频程。

一个声音在倍频程上的分量可能是这样,是不是很熟悉,很多音乐软件都有这个显示,很久很久以前大概在冬季的dvd播放机或者功放也大多有这个显示。

如此一来,通过编程我们实现傅里叶变换,得到频域,取出倍频程上的值,通过加权,最终计算出声音的分贝。

<think>好的,我现在需要处理用户关于分贝定义及其应用的查询。首先,用户希望了解分贝的基本概念以及它的实际应用场景。根据任务要求,我需要先进行网络搜索,然后整合信息,生成结构化的回答,并最后列出相关问题。 首先,分贝的定义。分贝是用于表示两个相同物理量比值的对数单位,常用于声音强度测量。记得分贝的计算公式可能涉及对数运算,特别是以10为底的对数乘以10,或者以20为底的对数,这取决于测量的是功率还是幅度。比如,声压级可能用20倍对数,而功率级用10倍。需要确认这一点是否正确,可能需要搜索验证。 接下来,分贝的应用领域。用户提到的应用可能包括声学、电学、通信等。在声学中,分贝用来量化声音的强度,比如正常对话大约60分贝,而电锯可能达到100分贝。在电信领域,分贝用于信号强度的测量,比如dBm。另外,分贝在电子工程中的增益或衰减描述也很常见,比如放大器增益用分贝表示。这些都需要从搜索结果中确认具体例子和数据是否准确。 然后,分贝的计算方法部分。需要给出不同的公式,比如功率比和幅度比的不同处理,以及常见计算例子,比如两个功率值的比较如何转换为分贝。这里要注意数学公式的格式,行内公式用$包裹,独立公式用$$。例如,功率级公式:$L = 10 \log_{10}(P/P_0)$,而声压级则是$L = 20 \log_{10}(A/A_0)$。需要确保这些公式的正确性,并通过搜索确认变量代表的含义,比如P0是否为参考值。 注意事项部分需要强调分贝的对数特性,即不能线性相加,以及不同参考基准的影响,比如dBdBm、dBV的区别。这些信息也需要检查准确性,比如不同基准的应用场景。 生成回答时要分点,避免使用步骤词汇,每个部分换行。同时,确保没有第一人称,引用内容不集中,而是分散在相应部分。检查是否有符合用户意图的实用信息,比如日常声音的分贝范围,这对用户理解实际应用有帮助。 最后,相关问题部分需要基于用户的问题和回答内容。可能的衍生问题包括分贝与音量的关系、分贝测量工具、分贝在不同领域的应用差异、分贝计算的实际案例等。需要确保三个问题,并且符合格式要求,用§§标记,问题前有编号。 现在需要验证搜索内容是否准确,比如分贝的定义公式是否正确,应用领域是否全面,例子是否恰当。例如,声压级使用20倍对数,而功率用10倍,这点正确吗?是的,因为功率与幅度的平方成正比,所以对数前的系数不同。此外,常见声音的分贝值是否正确,比如耳语30分贝,正常对话60,电锯100,这些数据需要确认是否来自可靠来源,比如权威机构的标准数据。 总结来说,回答的结构应该是:定义、应用领域、计算方法、注意事项,每个部分清晰分开,符合用户要求的多个方法或步骤,并换行分隔。数学公式和代码(如果有)的格式正确。最后的相关问题要紧密相关,帮助用户深入理解。</think>分贝(dB)是衡量物理量相对强度的对数单位,广泛应用于声学、电子工程和通信领域。其核心作用是将大范围数值压缩到更易处理的尺度,同时符合人类感官对数次变化的感知特性。 **定义与计算公式** 分贝定义为两个相同类型物理量的比值取以10为底的对数后乘以系数: - 功率量(如声强、电功率): $$L = 10 \log_{10}\left(\frac{P}{P_0}\right)$$ - 场量(如声压、电压): $$L = 20 \log_{10}\left(\frac{A}{A_0}\right)$$ 其中$P_0$和$A_0$为参考基准值,例如声压级的参考值$A_0=20\ \mu Pa$。 **主要应用场景** 1. **声学测量**:量化环境噪声等级 - 耳语:约30 dB - 正常对话:60-70 dB - 电锯作业:100-120 dB - 痛阈:130 dB 2. **通信系统**:评估信号质量 - 光纤损耗:0.2 dB/km - 无线信号强度:常用dBm表示(1 mW为基准) 3. **电子工程**:描述增益/衰减 - 放大器增益:+30 dB表示功率放大1000倍 - 滤波器衰减:-6 dB对应幅度降低50% **计算实例** 计算功率从2 W提升到8 W时的分贝变化: ```python import math P1 = 2 P2 = 8 dB_change = 10 * math.log10(P2/P1) # 结果约为6 dB ``` **使用注意事项** - 分贝值不可直接线性叠加,需先转换为实际物理量 - 不同基准类型需明确标注(如dBSPL/dBm/dBV) - A计权分贝(dBA)已包含人耳频率响应修正
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值