t检验的p值对照表_第十讲 R-两独立样本t检验

本文介绍了如何使用R语言进行两独立样本t检验,包括检查数据正态性、方差齐性,并通过t.test()函数计算t检验,解释p值与结果,探讨男女体重差异的统计分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

06fdc499247fe71fd28d96535aa80c5c.png

两独立样本t检验用于比较的平均两个独立的组是否存在差异。

例如,假设我们测量了100个人的体重:50名女性(A组)和50名男性(B组)。我们想知道女性的平均体重(mA)与男性(mB)。

在这种情况下,我们有两组不相关(即独立或不成对)的样本。因此,可以使用两独立样本t检验来评估均值是否不同。

注意,仅当数据呈正态分布时,才可以使用两独立样本t检验。可以使用Shapiro-Wilk test进行检查。(请参看第六讲。)同时,需要满足两组数据方差相等,即假设两组数据来自同一个大样本人群。这可以使用F-test进行检验。

1. 研究问题和统计假设

典型的研究问题是:

  1. A组均值(mA)是否等于B组均值(mB)?
  2. A组均值(mA)是否小于B组均值(mB)?
  3. A组均值(mA)是否大于B组均值(mB)?

在统计数据中,我们可以定义相应的无效假设(H0) 如下:

  1. H0:mA = mB
  2. H0:mA ≤ mB
  3. H0:mA ≥ mB

相应的备择假设(H1)如下:

  1. H1:mA ≠ mB (不同)
  2. H1:mA > mB(大于)
  3. H1:mA < mB(小于)

注意:

  • 假设1)称为双向检验
  • 假设2)和3)称为单向检验

2. 两独立样本t检验的公式

2.1 当两组方差相等(方差齐性)时,可以使用student-t检验方法比较两组差异:

340c4a6bef1f2f869ec5a94878532120.png

其中,

  • mA和mB分别是A、B两组样本均值
  • nA和nB分别是A、B两组样本
  • s2是样本的标准差,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值