
两独立样本t检验用于比较的平均两个独立的组是否存在差异。
例如,假设我们测量了100个人的体重:50名女性(A组)和50名男性(B组)。我们想知道女性的平均体重(mA)与男性(mB)。
在这种情况下,我们有两组不相关(即独立或不成对)的样本。因此,可以使用两独立样本t检验来评估均值是否不同。
注意,仅当数据呈正态分布时,才可以使用两独立样本t检验。可以使用Shapiro-Wilk test进行检查。(请参看第六讲。)同时,需要满足两组数据方差相等,即假设两组数据来自同一个大样本人群。这可以使用F-test进行检验。
1. 研究问题和统计假设
典型的研究问题是:
- A组均值(mA)是否等于B组均值(mB)?
- A组均值(mA)是否小于B组均值(mB)?
- A组均值(mA)是否大于B组均值(mB)?
在统计数据中,我们可以定义相应的无效假设(H0) 如下:
- H0:mA = mB
- H0:mA ≤ mB
- H0:mA ≥ mB
相应的备择假设(H1)如下:
- H1:mA ≠ mB (不同)
- H1:mA > mB(大于)
- H1:mA < mB(小于)
注意:
- 假设1)称为双向检验
- 假设2)和3)称为单向检验
2. 两独立样本t检验的公式
2.1 当两组方差相等(方差齐性)时,可以使用student-t检验方法比较两组差异:

其中,
- mA和mB分别是A、B两组样本均值
- nA和nB分别是A、B两组样本量
- s2是样本的标准差,