python实现斐波那契数列_python实现斐波那契数列的方法示例

介绍

斐波那契数列,又称黄金分割数列,指的是这样一个数列:0、1、1、2、3、5、8、13、21、……在数学上,斐波纳契数列以如下递归的方法定义:

F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*) 。

2017112102200763.jpg?2017012102211

1. 元组实现

fibs = [0, 1]

for i in range(8):

fibs.append(fibs[-2] + fibs[-1])

这能得到一个在指定范围内的斐波那契数列的列表。

2. 迭代器实现

class Fibs:

def __init__(self):

self.a = 0

self.b = 1

def next(self):

self.a, self.b = self.b, self.a + self.b

return self.a

def __iter__(self):

return self

这将得到一个无穷的数列,可以采用如下方式访问:

fibs = Fibs()

for f in fibs:

if f > 1000:

print f

break

else:

print f

3. 通过定制类实现

class Fib(object):

def __getitem__(self, n):

if isinstance(n, int):

a, b = 1, 1

for x in range(n):

a, b = b, a + b

return a

elif isinstance(n, slice):

start = n.start

stop = n.stop

a, b = 1, 1

L = []

for x in range(stop):

if x >= start:

L.append(a)

a, b = b, a + b

return L

else:

raise TypeError("Fib indices must be integers")

这样可以得到一个类似于序列的数据结构,可以通过下标来访问数据:

f = Fib()

print f[0:5]

print f[:10]

4.Python实现比较简易的斐波那契数列示例

先放一个斐波那契数列出来瞧瞧…

0 1 1 2 3 5 8 13 21 34 55 89 144 233...

首先给头两个变量赋值:

i, j = 0, 1

当然也可以这样写:

i = 0

j = 1

接着定个范围,就10000之内好了:

while i < 10000:

然后在while语句中输出i并设计逻辑:

print i,

i, j = j, i+j

在这里需要注意:“i, j = i, i+j”这条代码不能写成如下所示:

i = j

j = i+j

如果写成这样,j就不是前两位相加的值,而是已经被j赋过值的i和j相加的值,这样的话输出的数列会如下所示:

0 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

正确的整片代码如下所示:

i, j = 0, 1

while i < 10000:

print i,

i, j = j, i+j

最后展示运行结果:

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765

总结

以上就是关于利用Python实现斐波那契数列的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流。

本文标题: python实现斐波那契数列的方法示例

本文地址: http://www.cppcns.com/jiaoben/python/176540.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值