python中的df是什么意思_python – 了解scikit CountVectorizer中的min_df和max_df

我有五个文本文件,我输入到CountVectorizer.将min_df和max_df指定给CountVectorizer实例时,min / max文档频率的确切含义是什么?它是特定文本文件中单词的频率,还是整个语料库中单词的频率(5个txt文件)?

当min_df和max_df以整数或浮点数形式提供时,它有何不同?

该文档似乎没有提供详尽的解释,也没有提供示例来演示min_df和/或max_df的使用.有人可以提供演示min_df或max_df的解释或示例.

解决方法:

max_df用于删除过于频繁出现的术语,也称为“语料库特定的停用词”.例如:

> max_df = 0.50表示“忽略出现在50%以上文档中的术语”.

> max_df = 25表示“忽略超过25个文档中出现的术语”.

默认的max_df是1.0,这意味着“忽略出现在100%以上文档中的术语”.因此,默认设置不会忽略任何术语.

min_df用于删除不经常出现的术语.例如:

> min_df = 0.01表示“忽略出现在少于1%的文档中的术语”.

> min_df = 5表示“忽略少于5个文档中出现的术语”.

默认min_df为1,表示“忽略少于1个文档中出现的术语”.因此,默认设置不会忽略任何术语.

标签:python,scikit-learn,machine-learning,nlp

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值