我有五个文本文件,我输入到CountVectorizer.将min_df和max_df指定给CountVectorizer实例时,min / max文档频率的确切含义是什么?它是特定文本文件中单词的频率,还是整个语料库中单词的频率(5个txt文件)?
当min_df和max_df以整数或浮点数形式提供时,它有何不同?
该文档似乎没有提供详尽的解释,也没有提供示例来演示min_df和/或max_df的使用.有人可以提供演示min_df或max_df的解释或示例.
解决方法:
max_df用于删除过于频繁出现的术语,也称为“语料库特定的停用词”.例如:
> max_df = 0.50表示“忽略出现在50%以上文档中的术语”.
> max_df = 25表示“忽略超过25个文档中出现的术语”.
默认的max_df是1.0,这意味着“忽略出现在100%以上文档中的术语”.因此,默认设置不会忽略任何术语.
min_df用于删除不经常出现的术语.例如:
> min_df = 0.01表示“忽略出现在少于1%的文档中的术语”.
> min_df = 5表示“忽略少于5个文档中出现的术语”.
默认min_df为1,表示“忽略少于1个文档中出现的术语”.因此,默认设置不会忽略任何术语.
标签:python,scikit-learn,machine-learning,nlp