道路卵形回旋线任意点坐标及方位角计算方法 【摘 要】 本文提出了卵形曲线中缓和曲线段上点位坐标计算方案,推导了其计算过程及公式,并附实例。对始于高等级道路的平面卵形 曲线的测设有重要的指导作用。 一、回旋线的基本特征及坐标计算 回旋线上,任意一点的曲率半径ρ与该点至曲线起点的曲线长l之积为一常数(图1)即 ρl=A2 (1) 或 式中,A2为回旋曲线常数,表征回旋曲线曲率变化缓急程度的量,称A为回旋曲线参数。 |
图 1 1.回旋曲线上任意一点坐标计算 由图1(曲线右旋),取回旋线的起始点ZH处的切线方向为x轴,法线方向为y轴,任意一点的 切线方向方位角为缓和曲线角β。在缓和曲线上对任意一点P取微分 dl=ρdβ 考虑式(1)对β或l在区间[0,β]或[0,l]上积分后有下列关系式成立 l2=2A2β (2) (3) (4) 或者 (5) (6) 对于公路平面线形的基本形,其缓和曲线始于直线终于圆曲线,故缓和曲线的曲率半径ρ变化于∞~R(圆曲半径)。设缓和曲线段长度为ls,则 (7) (8) 2.回旋线的几何要素 见图1,回旋线的几何要素计算公式如下:任意点P处的曲率半径(由式(1)和式(2)) (9) P点的回旋曲线长 (10) P点的缓和曲线角(切线方位角,由(9)式) (11) 上面导出了当参数分别为β和l时的右旋缓和曲线上任一点的坐标和几何要素公式。显然,缓和曲线左旋时(图2),与右旋相比,x坐标公式一致,而y、β反号。若令sign=±1,缓和曲线右旋时取sign=1,左旋时取sign=-1,则坐标和方位角等符号量可统一 表示为: (12) |
图 2 3. 回旋曲线的基本特征 1.几何特性。回旋曲线随着曲线长度的增加,曲率按线性函数增加。起点处l=0,曲率l/ρ=0,终点处l=ls,曲率l/p=常数。 二、卵形曲线形式及其缓和曲线段坐标计算 按直线-缓和曲线(A1)-圆曲线(R1)-缓和曲线-圆曲线(R2)-缓和曲线(A2)-直线的顺序组合构成的平面线形形式(R1≠R2),称为卵形曲线(图3) 。卵形曲线中,显然圆曲线-缓和曲线-圆曲线段的缓和曲线坐标计算是新的课 题,它成为整个卵形曲线计算的瓶颈。解决了这个问题,其他平面线形形式的曲线坐标计算 也就迎刃而解了。 |
图 3 解决问题的关键在于对两圆曲线之间的缓和曲线的正确认识:(1) 两不等圆曲线之间的缓和 曲线仍是回旋线;(2) 该回旋线是没有起点(ρ=0)的回旋线段。 O-YH弧长:l1=A2/R1 O-HY弧长:ls=l1+l0=A2/R2 这里,l0=lYH-HY为缓和曲线段长度。 l′=l1+l 这里,l为P至圆缓点YH的弧长。 α0=α1-α2 (13) 于是,独立坐标系中任意一点P(x,y)的大地坐标X,Y为 X=X0+xcosα0-ysinα0 (14) Y=Y0+xsinα0+ycosα0 (15) 这里,X0,Y0可由点YH或HY已知坐标数据(大地、独立)用上两式求得。P点切线大地方位角 α=α0+signβ (16) 法线大地方位角 τ=(α-sign90)±180 (17) 三、算 例广东某高速公路一段卵形曲线设计数据的特征点大地坐标见表1,缓和曲线参数A=30 0,缓和曲线长度l0=157.50 m,两相接圆曲半径见图4。求缓和曲线内两里程桩号点的大地坐标及法向方位角。 |
图4 表1 部分设计数据 |
点 号)/(里程桩号)/(X/m)/(Y/m)/(其他数据 |
圆缓点(YH))/(K0+327.43)/(3 961.506)/(4 033.679)/(T1=59.95 |
交 点(JD))/(K0+387.38)/(3 998.132)/(3 986.223)/(T2=97.98 |
缓圆点(HY))/(K0+484.93)/(4 071.589)/(3 921.382)/(θ=10°54′13″ |
简要计算如下: l1=A2/R2=30 mls=l1+l0=A2/R1=187.50 m 由此代入式(7)、式(8)并注意到R=R1=480得HY,YH点独立坐标为 由直线HY-YH的大地方位角α1和独立方位角α2得独立坐标轴x的大地方位角 α=α1-α2=138°51′05″ 则 X0=4 094.145 Y0=3 901.605 于是缓和曲线上点K0+420处、K0+380处坐标与方位角数据可得 K0+420:(l′=l1+484.93-420=94.93) x=94.906 y=-1.584 β=2°52′06″ X=4 023.723 Y=3 965.247 τ=45°58′59″ K0+380:(l′=l1+484.93-380=134.93) x=134.792 y=-4.546 β=5°47′43″ X=3 995.637 Y=3 993.723 τ=43°03′22″ 四、结束语 卵形曲线中两圆曲之间的缓和曲线段是螺旋回旋线不含起点的一部分。其上任意点的坐标计 算仍可套用平面线形基本形中的缓和曲线点的坐标公式。本文给出的卵形曲线中缓和曲线段 任一点的坐标特别是大地坐标及其法向方位角的解算方案及公式,既解决了测设数据的数值 计算问题,又适应了野外测设使用大地坐标设站灵活性强、效率高、节省外业工作量的现代 发展趋势。使用可编程的便携机非常方便快捷。 作者单位:中南工业大学 410083 参考文献 [1] 孙家驷等.公路勘测设计.重庆:重庆大学出版社,1994 |