python 检验数据正态分布程度_python 判断一组数据是否符合正态分布

正态分布:

若随机变量x服从有个数学期望为μ,方差为σ2 的正态分布,记为N(μ,σ)

其中期望值决定密度函数的位置,标准差决定分布的幅度,当υ=0,σ=0 时的正态分布是标准正态分布

判断方法有画图/k-s检验

画图:

#导入模块

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

#构造一组随机数据

s = pd.DataFrame(np.random.randn(1000)+10,columns = ['value'])

#画散点图和直方图

fig = plt.figure(figsize = (10,6))

ax1 = fig.add_subplot(2,1,1) # 创建子图1

ax1.scatter(s.index, s.values)

plt.grid()

ax2 = fig.add_subplot(2,1,2) # 创建子图2

s.hist(bins=30,alpha = 0.5,ax = ax2)

s.plot(kind = 'kde', secondary_y=True,ax = ax2)

plt.grid()

结果如下:

20200923181931858.png

使用ks检验:

#导入scipy模块

from scipy import stats

"""

kstest方法:KS检验,参数分别是:待检验的数据,检验方法(这里设置成norm正态分布),均值与标准差

结果返回两个值:statistic → D值,pvalue → P值

p值大于0.05,为正态分布

H0:样本符合

H1:样本不符合

如何p>0.05接受H0 ,反之

"""

u = s['value'].mean() # 计算均值

std = s['value'].std() # 计算标准差

stats.kstest(s['value'], 'norm', (u, std))

结果是KstestResult(statistic=0.01441344628501079, pvalue=0.9855029319675546),p值大于0.05为正太分布

以上就是python 判断一组数据是否符合正态分布的详细内容,更多关于python 正态分布的资料请关注WEB开发者其它相关文章!

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
©️2021 CSDN 皮肤主题: 1024 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值