ticw6-2009计算机电缆,[电气电力]TICW∕06-2009 计算机与仪表电缆.pdf

本文介绍了国家电线电缆质量监督检验中心为解决特种电缆如计算机与仪表电缆市场混乱、质量参差不齐的问题,依据国际和用户需求,发布了TICW/06-2009技术规范。该规范旨在提升产品质量,提供设计院选型依据和用户质量评估标准,以保障电气设备安全和市场健康发展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[电气电力]TICW∕06-2009 计算机与仪表电缆

TICW

国家电线电缆质量监督检验中心技术规范

TICW/06—2009

计算机与仪表电缆

2009-05-01 发布 2009-05 -01 实施

国家电线电缆质量监督检验中心 发布

TICW/02-2009

编者按

随着电线电缆行业的发展和竞争的加剧,人们的目光又投向了特种电线电缆产品上,所谓特种电线电

缆在使用场合、产品技术性能指标上肯定有其特殊性,因而较普通电缆具有较高的利润率,目前正被众

多电缆企业争相开发并投放市场。

但对于目前量大面广的氟塑料电缆、硅橡胶电缆和计算机及仪表电缆等特种电缆目前都没有统一的

技术规范,各个企业各自为政,制造的电缆结构尺寸要求、使用的材料及要求、电压等级、使用环境温

度、规格截面、使用场合等等都不统一,非常不规范,给用户的选择和使用带来很大的麻烦,并且由于

没有国家和行业标准,产品要求不规范,产品质量良莠不齐,这些电缆市场监管无法可依,大量不合格

或劣质电缆充斥市场,不仅为用户带来了不必要的经济损失,也为使用电缆的设备安全运行带来了很大

的隐患,严重威胁着电气控制设备、电力系统的正常运行及人身财产的安全,同时也严重影响了电缆行

业的声誉,近期特种电缆出现质量事故和纠纷案例的增加充分说明了这一点。

为此国家电线电缆质量监督检验中心依托上海电缆研究所五十几年的技术底蕴、本身二十几年的检

测经验和人才优势,应广大特种电缆使用者的要求,邀请了国内众多在特种电缆制造方面技术领先的电

缆制造企业,以国内外最新的相关标准和用户要求为基础,编制了计算机及仪表电缆等特种电缆技术规

范。

计算机及仪表电缆等特种电缆技术规范的制定,必将在很大程度上净化国内计算机及仪表电缆等特

种电缆型号混乱、产品质量参差不齐的局面,有利于产品质量的提高和控制,并将使设计院有了选择电

缆的依据,采购方和用户有了产品质量考核的依据。

地址:上海市军工路1000号 电话:021 传真:021 网址:

I

TICW/06-2009

前 言

本规范主要参照了 BS5308 标准《供内部安全系统用检测仪器电缆》、 IEC 60092-376:2003

《 船舶电气设施 第 376部分:150/250V(300V)船舶控制电路和测量仪表电路用电缆》和 GB/T 9330

《塑料绝缘控制电缆》及 GB/T 12706.1-2002、GJB 773A-2000、HG/T 2904-1997 (等效于 ASTM D2116-02)、

GB/T 5013.3-2008/IEC 60245-3:2003、IEC 60092-351、IEC 60092-353、 IEC 60092-375 等标准。

本规范参照依据 GB/T 1

基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现
内容概要:本文深入介绍了HarmonyOS文件系统及其在万物互联时代的重要性。HarmonyOS自2019年发布以来,逐步覆盖多种智能设备,构建了庞大的鸿蒙生态。文件系统作为其中的“数字管家”,不仅管理存储资源,还实现多设备间的数据协同。文章详细介绍了常见的文件系统类型,如FAT、NTFS、UFS、EXT3和ReiserFS,各自特点和适用场景。特别强调了HarmonyOS的分布式文件系统(hmdfs),它通过分布式软总线技术,打破了设备界限,实现了跨设备文件的无缝访问。此外,文章对比了HarmonyOSAndroid、iOS文件系统的差异,突出了其在架构、跨设备能力和安全性方面的优势。最后,从开发者视角讲解了开发工具、关键API及注意事项,并展望了未来的技术发展趋势和对鸿蒙生态的影响。 适合人群:对操作系统底层技术感兴趣的开发者和技术爱好者,尤其是关注物联网和多设备协同的用户。 使用场景及目标:①理解HarmonyOS文件系统的工作原理及其在多设备协同中的作用;②掌握不同文件系统的特性和应用场景;③学习如何利用HarmonyOS文件系统进行应用开发,提升跨设备协同和数据安全。 阅读建议:本文内容详实,涵盖了从基础概念到高级开发技巧的多个层次,建议读者结合自身需求,重点关注感兴趣的部分,并通过实践加深理解。特别是开发者可参考提供的API示例和开发技巧,尝试构建基于HarmonyOS的应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值