高数小课堂之微分算子求解(常系数)微分方程

算子多项式法用于求解线性常微分方程的特解,通过将微分算子视为代数变量并进行形式运算来简化求解过程。以下为详细步骤及证明:


一、算子多项式与微分方程

考虑非齐次线性微分方程:

L(D)y=f(x)

L(D)=a_{n}D_{n}+a_{n-1}D_{n-1}++\cdots +a_{1}D_{1},D=\frac{\partial }{\partial x}

目标是找到特解 𝑦𝑝​,使得 𝐿(𝐷)𝑦𝑝=𝑓(𝑥)。


二、逆算子法的基本思想

形式上,特解可表示为:

y_{p}=\frac{1}{L(D)}f(x)

这里的 \frac{1}{L(D)}是逆微分算子,需根据 𝑓(𝑥)的类型具体操作。


3. 指数函数特解的推导与证明

情况一:f(x)=e^{kx},L(k)\neq 0,L^{'}(k)=0且 𝐿(𝑘)≠0L(k)=0

特解形式

y_{p}=\frac{1}{L(k)}f(x)

证明
应用 L(D)y_p

L(D)y_p = L(D)\left(\frac{e^{kx}}{L(k)}\right) = \frac{1}{L(k)}L(D)e^{kx}

由于D^n e^{kx} = k^n e^{kx},故:

L(D)e^{kx} = (a_n k^n + a_{n-1} k^{n-1} + \cdots + a_0)e^{kx} = L(k)e^{kx}

代入得:

L(D)y_p = \frac{L(k)e^{kx}}{L(k)} = e^{kx} = f(x)

证毕。

情况二:f(x) = e^{kx} 且 k 是 𝐿(𝐷) 的 𝑚重根

特解形式

y_p = \frac{x^m e^{kx}}{L^{(m)}(k)}

其中 L^{(m)}(k)是 𝐿(𝐷)在 𝑘处的 𝑚 阶导数。

证明
L(D) = (D - k)^m M(D),且M(k) \neq 0。则:

L(D)y_p = (D - k)^m M(D)\left(\frac{x^m e^{kx}}{M(k)m!}\right)

利用 ,(D - k)^m(x^m e^{kx}) = m!e^{kx}得:

L(D)y_p = \frac{M(D)(m!e^{kx})}{M(k)m!} = \frac{M(k)e^{kx}}{M(k)} = e^{kx}

证毕。


4. 多项式特解的推导与证明

情况:𝑓(𝑥)=𝑃(𝑥)(多项式)

特解形式
\frac{1}{L(D)​ 展开为 𝐷的幂级数,作用于 𝑃(𝑥)。

步骤

  1. 将 𝐿(𝐷)写为 L(D) = D^n + a_{n-1}D^{n-1} + \cdots + a_0

  2. 假设 \frac{1}{L(D)} = c_0 + c_1D + c_2D^2 + \cdots(形式级数)。

  3. 作用于 𝑃(𝑥),由于高阶导数 D^k P(x)k > \deg(P)时为零,级数截断。

例子:求解 (D^2 + 1)y = x^2

特解为:

y_p = \frac{1}{D^2 + 1} x^2 = (1 - D^2 + D^4 - \cdots)x^2 = x^2 - 2

验证:

(D^2 + 1)(x^2 - 2) = 2 + x^2 - 2 = x^2

证毕。


5. 三角函数特解的推导与证明

情况:𝑓(𝑥)=cos⁡(𝑎𝑥)或 sin⁡(𝑎𝑥)

利用欧拉公式\cos(ax)=Re(e^{iax}),转化为指数函数处理。

特解形式
L(ia)\neq0,则:

y_p = Re\left(\frac{e^{iax}}{L(ia)}\right) = \frac{\cos(ax)}{L(ia)}

(需分离实部或虚部)

证明
类似指数函数情形,利用 L(D)e^{iax}=L(ia)e^{iax}


6. 一般性证明框架

对任意 𝑓(𝑥),若\frac{1}{L(D)}f(x) 存在,则特解满足:

L(D)\left(\frac{1}{L(D)}f(x)\right)=f(x)

关键点

  • 算子的线性性:L(D)(ay_1+by_2)=aL(D)y_1+bL(D)y_2

  • 算子的交换性:L(D)\cdot\frac{1}{L(D)}=1


7. 总结

通过将微分算子 𝐷D 代数化,逆算子法将求解微分方程转化为形式运算,适用于指数、多项式、三角函数等特定类型的非齐次项。其正确性可通过直接代入验证,核心在于算子作用于特解后还原出原函数。

公式总结

  • f(x)=e^{kx}:y_p=\frac{e^{kx}}{L(k)}(若 𝐿(𝑘)≠0)。

  • 对多项式 P(x): y_p=\frac{1}{L(D)}P(x)(展开逆算子为有限级数)。

  • 对三角函数:转化为指数形式后类似处理。


这一方法通过形式化地处理微分算子,简化了寻找特解的过程,其严谨性依赖于算子的线性性质及特定函数的微分特性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值