算子多项式法用于求解线性常微分方程的特解,通过将微分算子视为代数变量并进行形式运算来简化求解过程。以下为详细步骤及证明:
一、算子多项式与微分方程
考虑非齐次线性微分方程:
目标是找到特解 𝑦𝑝,使得 𝐿(𝐷)𝑦𝑝=𝑓(𝑥)。
二、逆算子法的基本思想
形式上,特解可表示为:
这里的 是逆微分算子,需根据 𝑓(𝑥)的类型具体操作。
3. 指数函数特解的推导与证明
情况一:且 𝐿(𝑘)≠0L(k)=0
特解形式:
证明:
应用 到
:
由于,故:
代入得:
证毕。
情况二: 且 k 是 𝐿(𝐷) 的 𝑚重根
特解形式:
其中 是 𝐿(𝐷)在 𝑘处的 𝑚 阶导数。
证明:
设,且
。则:
利用 ,得:
证毕。
4. 多项式特解的推导与证明
情况:𝑓(𝑥)=𝑃(𝑥)(多项式)
特解形式:
将 展开为 𝐷的幂级数,作用于 𝑃(𝑥)。
步骤:
-
将 𝐿(𝐷)写为
。
-
假设
(形式级数)。
-
作用于 𝑃(𝑥),由于高阶导数
在
时为零,级数截断。
例子:求解
特解为:
验证:
证毕。
5. 三角函数特解的推导与证明
情况:𝑓(𝑥)=cos(𝑎𝑥)或 sin(𝑎𝑥)
利用欧拉公式,转化为指数函数处理。
特解形式:
若 ,则:
(需分离实部或虚部)
证明:
类似指数函数情形,利用 。
6. 一般性证明框架
对任意 𝑓(𝑥),若 存在,则特解满足:
关键点:
-
算子的线性性:
-
算子的交换性:
7. 总结
通过将微分算子 𝐷D 代数化,逆算子法将求解微分方程转化为形式运算,适用于指数、多项式、三角函数等特定类型的非齐次项。其正确性可通过直接代入验证,核心在于算子作用于特解后还原出原函数。
公式总结:
-
对
(若 𝐿(𝑘)≠0)。
-
对多项式
(展开逆算子为有限级数)。
-
对三角函数:转化为指数形式后类似处理。
这一方法通过形式化地处理微分算子,简化了寻找特解的过程,其严谨性依赖于算子的线性性质及特定函数的微分特性。