上篇通过两道中考真题介绍了关于双动点动点产生平行四边形的解法,主要是分两种情况进行讨论,一种是两定点构成的线段为平行四边形一边时,主要采用平行四边形一组对边平行且相等这个性质来进行求解;另外 一种是两定点构成的线段为平行四边形对角线时,利用平行四边形对角线相互平分这个性质,使用中点坐标公式建立方程进行求解。关于动点产生平行四边形的题目一般难度不大,可以轻松掌握。
今天我们来看一下,由于动点产生的图形面积问题如何来进行求解。
文末有题目电子版的获取方式
第一题是2019扬州中考关于动点产生的面积问题。
【分析】(1)①P在线段AD上,PQ=AB=20,AP=x,AM=12,由梯形面积公式得出方程,解方程即可;
【分析】②在解决动点产生的面积问题时,通常会用到分类讨论,而分类原则其实就是根据所求图形面积表达式的不同。比如在这道题目中,当P在AD上运动时,P到D点时四边形AMQP面积最大,为直角梯形;当P在DG上运动,10<x<20,四边形AMQP为不规则梯形。很明显在计算这两种图形面积时,列出的面积表达式不同。
在具体求解时,直角梯形情况非常容易,直接列式计算即可;当四边形AMQP为不规则梯形时,需要利用三角形相似,根据对应线段成比例求出上底PQ=40﹣2x。
【分析】最后一问会用到PQ=40﹣2x,首先写出梯形AMQP的面积的表达式(含有字母a),这里需要特别提醒一下,很多同学对于这种含有参数的表达式有抵触,一旦遇到这类问题就觉得自己肯定做不出来,其根本原因就是见的太少,其实含参数的表达式并不可怕,当成是一个已知数来进行计算就可以了。
本题中,当列出梯形AMQP的面积表达式之后,可以求出表达式中对称轴的范围,由于10≤x<20(这里注意题目中要求与点G不重合,所以不能等于20),所以当表达式要取得最小值时,x应该无限接近于20,在最后列式时,面积表达式不能等于50。
第二题是2019益阳中考压轴题
【分析】由于抛物线的定点为A,根据二次函数的顶点式,将函数表达式设为y=a(x﹣1)2+4,代入B点坐标即可。
【分析】对于四边形OBAD这种不规则的四边形,对于面积问题的处理,通常采用的是面积分割,首先将其分割成△ODA和△AOM两部分,根据平行关系,把△ODA转化成△OEA,使得四边形OBAD与转换完成后的△OBE相等。在利用条件中“M是BE的中点”,说明OM是否将四边形OBAD分成面积相等的两部分。具体解题过程如下。
【分析】首先根据条件“P(m,n)是抛物线在第四象限的图象上的点,且m+n=﹣1”,说明P点的横纵坐标满足的关系是相加等于1,也就是说明P点在直线x+y=﹣1上。
在根据上一题的思路,将四边形ADCP进行分割,将其中的△ADC转化为△AQC。转化的方法就是和上一问一样,通过做△ADC的顶点D做平行线得到。求出点Q及点P的坐标即可。
第三题是2019临沂中考压轴题
本题留给大家作为练习使用
解题过程如下