一阶电路误差分析_PDE有限差分方法(12)——对流方程数值格式的分析方法

本文探讨了对流方程的数值格式,包括迎风格式、LW格式等五种差分格式的表现,并分析了这些格式的相容性、稳定性及数值振荡特性。通过对比不同格式的优缺点,讨论了如何平衡高阶精度与数值振荡的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

423953fef52f398a8430325c8446c67f.png

今天直接把张强书上的第6章大部分内容完成掉. 主要讲对流方程数值格式的相容性、稳定性以及数值振荡的分析方法。

参考书:
(1) J.W. Thomas - Numerical Partial Differential Equations_ Finite Difference Methods (1995, Springer)
(2) 张强《偏微分方程的有限差分方法》科学出版社,2019年1月版。
(3) K. W. Morton, D. F. Mayers - Numerical solution of partial differential equations (2005, Cambridge University Press)

今天内容:

1 五种差分格式的数值表现

考虑初值函数

同时具有光滑部分与间断部分, 比较迎风格式与LW格式的数值表现. (图来自张强书的插图)

6d8d6b3fa585b143d38de1e64f67ceaa.png

45cef3eb0a9a55f89442c381bcebd4e4.png
  • 在真解光滑的区域, 两个格式的数值表现都比较理想, LW格式相容阶更高, 误差更小.
  • 在间断界面附近, 迎风格式的间断界面(也叫数值过渡区域)是平滑的; 但LW格式出现了数值振荡与上下溢出. 即使加密网格也不会得到明显改善. (网格加密后, 数值震荡明显可见的时间仅仅是被推迟了, 不可能消除)
  • 这个例子表明双曲方程的数值困难, 即高阶精度与数值振荡是无法调和的两个对立面.迎风格式与LW格式各有优缺点, 我们希望构造尽可能保持高阶精度且保持间断面的形态.

下面用Lax格式与迎风格式进行对比. 空间步长

网比

3db7fc6e7f0c953d38a5cfe789dbda21.png
  • 根据数值结果, 两个格式捕捉间断界面位置都比较精确. 但是在间断界面附近, Lax格式的数值过渡区域更宽, 峰值下降程度更厉害, 即Lax格式比迎风格式有更强的数值耗散机制.

下面绘制蛙跳格式在不同时刻的数值解. 空间步长

网比
第一层初值采用LW格式设置(迎风格式类似).

5f6f3e378bba51fae1c17803d5cd2bd9.png
  • 可以发现: 数值振荡出现在波后, 污染区域(振荡区域)随时间发展而变宽.

下面观察盒子格式的效果, 初值改为

空间步长

网比

e8a3bc57cf22699b76a37ee0e38ed241.png

可以发现, 数值振荡出现在波前, 污染区域随着时间发展而逐渐变宽.

2 线性常系数差分格式

考虑如下的线性常系数差分格式:

其中

是差分系数, 同格点位置与网格函数无关.

2.1 相容性

定理 差分方程
与对流方程
相容的充要条件是

若相容, 则局部截断误差至少为一阶.

证明:差分方程的局部截断误差是

由Taylor展开到二阶项即可证明结论. QED

由于对流方程有行波解结构, 差分方程

的相容阶有简便的判别方法: 若

均满足差分方程, 则局部截断误差至少达到k阶. 所以这个定理也可以改写为

函数1与
均精确满足差分方程, 则差分方程相容.
给出差分方程
达到k阶相容的充要条件.

由Taylor展开到k项,

由局部截断误差的定义,

如果要让格式是k阶相容的, 只需

化简得

2.2 单调格式与数值振荡

一个差分格式是单调保持格式指: 若数值初值单调, 则由这个差分格式得到的数值解也保持一定的单调性. (否则, 单调性刻画出现错误, 数值振荡随之产生. 所以单调保持性质是数值格式避免数值振荡的前提条件. )

单调格式指差分系数

非负.

注:由前面的相容性定理, 如果一个单调格式是相容格式, 则它具有凸组合的系数结构. 所以相容的单调格式满足离散最大模原理, 具有最大模稳定性! 也可以证明相容的单调格式有

$模稳定性, 后面将会介绍.
定理 单调格式也是单调保持格式, 反之亦然.

证明:用归纳法证明即可. 逆命题可以考虑用下面的反例证明: 如果数值格式有负系数, 不妨设

考虑初值

代入差分方程可得

数值解不再保持单增性质, 出现虚假数值振荡. QED

定理 [Godunov]单调格式至多具有一阶局部截断误差.

证明:设格式是相容的, 由Taylor展开, 局部截断误差为

$$

由Cauchy-Schwarz不等式与相容性条件,

等号成立的条件是

只有一个非零系数, 但这样的差分方程没有实际价值, 无需考虑.因此单调格式的局部截断误差至多一阶. QED

注:高阶相容的线性格式必定存在负系数, 数值振荡现象不可避免. 若要建立高阶无振荡格式, 需要跳出单调格式框架, 后面还会介绍TVD格式.

例1 LW格式、蛙跳格式、盒子格式都是高阶相容的, 不是单调格式, 由Godunov定理, 数值解会有数值振荡现象. 例2 迎风格式与Lax格式都是一阶相容, 在CFL条件下, 它们都是单调格式, 不会出现数值振荡.

2.3 数值耗散与数值色散

首先回顾一下Fourier方法. 对流方程

真解
(模态解),其中
这个模态解的振幅(amplitude)是不衰减的(undamped)(即能量保持不变), 而一步时间推进以后, 相位(phase)增加了

对流方程的数值解形如

其中
的函数. 一步时间推进以后, 模态解会乘上振幅系数
它是复的.
的模长表示了这个格式是否稳定(数值耗散性质).
  • 如果
    此时数值格式的振幅会膨胀, 出现反数值耗散性质, 则格式不稳定;
  • 如果
    则模态解是衰减的(damped), 出现数值耗散现象.
  • 如果
    则简谐波振幅保持不变, 此时格式是无耗散的.

把上面的

称为相位函数, k为波数,

相位速度,
波速. 若
则简谐波从左到右传播; 若
, 则简谐波从右到左传播.

把不同波数k的模态解(简谐波)叠加起来得到的整体波形就是原PDE的真解:

这里

是与
有关的常数:
它叫
色散关系(频散关系).
  • 如果
    是线性函数, 则各个简谐波的波速
    相同, 所以整体的波形不变.
  • 如果
    不是线性函数, 则不同波数
    的简谐波有不同的波速
    , 此时整体波形会发生变化, 这样的物理现象叫
    色散(频散), dispersion.

沿着波的传播方向, 位于波面(整体波形的波峰或者波谷或者间断界面)前面的位置叫波前, 位于波面后面的位置叫波后.

前面指出了, 增长因子的模

决定了数值格式的耗散性质(稳定性). 而增长因子的幅角
决定了数值色散性质.

数值解的相位与真解的相位的比为

其中

  • 则数值简谐波超前于真实简谐波;
  • 则数值简谐波滞后于真实简谐波.

通常数值相位速度

是非线性的, 不同波数
的数值简谐波有不同的波速
, 从而有数值色散现象.

注:数值色散现象会导致整体波形出现明显变化, 进而产生虚假的数值振荡现象, 如果

则数值振荡现象出现在波前; 如果
则数值振荡现象出现在波后.

注: 数值耗散与数值色散是导致数值误差的两个根本原因, 上述分析方法也适用于其他PDE的各种格式.

例1 LW格式的数值振荡出现在波后.

答: 设

足够小, 由Taylor展开,

所以数值解的相位与真解相位的比为

由于

足够小, 当
时, 数字1后面的误差项非正, 所以数值速度低于真实速度, 数值振荡出现在波后.

注:数值色散是数值振荡的根本原因, 数值耗散与数值色散的平衡关系决定数值振荡的具体表现.

例2 LW格式的增长因子满足

时, LW格式是有耗散的. 但是数值耗散的速度
比数值色散的速度
慢.

我们可以把前面涉及到的五种格式的

都写出来, 作一个总结:

  • 迎风格式与Lax格式都有较强的数值耗散(耗散速度为
    ), 而LW格式有弱数值耗散(
    ). 蛙跳格式与盒子格式无数值耗散.
  • 迎风格式和Lax格式是单调格式, 所以不会出现数值振荡现象. LW格式、蛙跳格式、盒子格式的阶数为2, 根据Godunov定理, 它们不是单调格式, 必定有数值振荡.
  • 时, LW格式、蛙跳格式的数值振荡出现在波后, 而盒子格式的数值振荡出现在波前. (当
    时相反)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值