曲线形状 画图_计算机图形学十:贝塞尔曲线与贝塞尔曲面

本文介绍了贝塞尔曲线的基本概念、性质和应用场景,包括如何通过控制点画出贝塞尔曲线,以及高阶贝塞尔曲线的分段处理。此外,还简要提及了贝塞尔曲面的概念,它是从二维到三维的扩展,通过两个参数确定曲面。
摘要由CSDN通过智能技术生成

贝塞尔曲线与贝塞尔曲面

1 贝塞尔曲线(Bézier Curves)

在进入具体原理讲解之前,首先看一下一条实际的贝塞尔曲线长什么样子

41efcef4c331e0ff2fe190cfbeb6ed22.png

其中

控制点,蓝色所表示曲线正是非常著名的贝塞尔曲线了,可以从图中观察到,曲线会与初始与终止端点相切,并且经过起点
与终点
。那么这样一条曲线究竟是怎么得到的呢?

其实贝塞尔曲线的定义很像参数方程,给定一个参数

就能确定贝塞尔曲线上的一点,倘若取完所有t值,就能得到完整的贝塞尔曲线,了解一下大概之后,接下来我们就开始介绍计算曲线的过程。

1f7e05b932689ee10f91b62bfd053668.png

首先从简单的3个控制点情形出发,示意如何画出曲线。 (n个控制点得到的是n-1次曲线,如图中3个控制点便是2次贝塞尔曲线)

正如一开始所说,第一步选定一个参数

,在
线段之上利用t值进行线性插值:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值