python seaborn 散点图矩阵_Python绘图总结(seaborn库的使用)(下)

上部分介绍了pie以及kdeplot、distplot、jointplot、pairplot的用法分别绘制出数据的饼图、核密度分布图、

柱状图、散点图、以及用jointplot绘制组合图。

下面开始总结(散点图(二维,三维),折线图,(并列,叠加)柱状图,三维曲面图,箱线图的画法):

(一)散点图:(relplot, scatterplot)

'''

seaborn.relplot(x=None, y=None, hue=None, size=None, style=None, data=None, row=None, col=None, col_wrap=None, row_order=None, col_order=None, palette=None, hue_order=None, hue_norm=None, sizes=None, size_order=None, size_norm=None, markers=None, dashes=None, style_order=None, legend='brief', kind='scatter', height=5, aspect=1, facet_kws=None, **kwargs)

'''

# -*- coding: utf-8 -*-

import seaborn as sns

import matplotlib.pyplot as plt

import pandas as pd

from scipy.stats import pearsonr,norm

data = pd.read_csv('anscombe.csv')

print(data.head())

sns.set_context('paper')

sns.set_style('ticks',{'font.sans-serif':['simhei','Arial']})

pal = sns.husl_palette(n_colors=4,l = .7)

sns.relplot(x = 'x', y = 'y', data = data, hue = 'dataset',style = 'dataset',sizes = (100,100),palette = pal)

plt.suptitle("不同组的x与y之间的关系")

plt.show()

996313-20200622155428636-331997265.png不同组相同style,都是圆形;

996313-20200622155554754-1280191593.png不同组不同style。

显然我们的目的不仅仅是观察散点分布,更重要的是为了寻求x与y之间以及不同组之间的关系。

我们对每一组的(x,y)连起来形成一个折线图,仅仅需要将kind = 'scatter'(默认)改为 kind = 'line';

可得图:

996313-20200622160642325-1665537525.png

可以看出第二组数据点形成的曲线近似于抛物线轨迹,第四组数据点都在直线上(垂直于x的直线,说明y与x无关,因为有一个点偏离较远所以导致折线图出现这种情况),而第一组和第三组,线性不是很明显,但是这两组y与x呈明显的正相关关系。

现在我们需要对这几组数据用回归拟合,找出每组内x与y之间的函数关系。

from scipy.stats importlinregress

data= pd.read_csv('anscombe.csv')

print(data.head())

sns.set_context('paper')

sns.set_style('ticks',{'font.sans-serif':['simhei','Arial']})

cls= ['I','II','III','IV']

markers= ['o','x','^','*']

c= ['r','b','g','y']

data= data[data['x']<18] #删除异常值,因为我们知道百分之95的数据的x都在(4,18)区间内,离群点对线性回归影响很大,特别是当数据量较小的时候

f= plt.figure(figsize=(8,6))for i in range(4):

dt= data[data['dataset']==cls[i]]

k,b,r,p,std= linregress(dt['x'],dt['y'])

flag= 1

ifnp.isnan(k):

k,b,r,p,std= linregress(dt['y'],dt['x'])

flag= 0plt.scatter(dt['x'],dt['y'],marker=markers[i],label =cls[i])ifflag:

plt.plot(dt['x'],k*dt['x']+b,color = c[i],label =cls[i])else:

plt.plot(k*dt['y']+b,dt['y'],color = c[i],label =cls[i])

flag= 1plt.legend(loc= 'upper left')

plt.suptitle('线性拟合各组数据')

plt.show()

996313-20200622175330520-1714856918.png

箱线图:

我们可以根据box图或者violin图来看每一组数据分布的区间,可以方便我们判断离群点:

data = pd.read_csv('anscombe.csv')

print(data.head())

sns.set_context('paper')

sns.set_style('ticks',{'font.sans-serif':['simhei','Arial']})

f= plt.figure(figsize=(8,6))

f.add_subplot(221)

sns.boxplot('dataset','x',data = data, palette = 'husl')

plt.xlabel('(a)')

f.add_subplot(222)

sns.boxplot('dataset','y',data = data, palette='husl')

plt.xlabel('(b)')

f.add_subplot(223)

sns.violinplot('dataset','x',data = data, palette = 'husl')

plt.xlabel('(c)')

f.add_subplot(224)

sns.violinplot('dataset','y',data = data, palette = 'husl')

plt.xlabel('(d)')

plt.tight_layout()

plt.show()

996313-20200622182334614-834093286.png

由图(c)可以看出第IV组的大部分的数据的x集中在8一点,而y分布与6周围,可以知道y和x的相关性很小,通过(a) (b)我们也可以看到离群点,

(a)至少有一个离群点,分布在x>18范围内,(b)至少有里两个离群点,分布在y>12范围内。

我们可以根据这个来删掉离群点,使得拟合结果更可信。

三维散点图:

先看三维曲线图:

importmatplotlib as mpl

from mpl_toolkits.mplot3dimportAxes3Dimportnumpy as npimportmatplotlib.pyplot as plt

mpl.rcParams['legend.fontsize'] = 10fig=plt.figure()

ax= fig.gca(projection='3d')

theta= np.linspace(-4 * np.pi, 4 * np.pi, 100) #变量theta,决定(x,y,z),所以形成的图形为三维空间中的一维曲线(z与theta是呈线性关系的,绘出100个点。

z= np.linspace(-2, 2, 100)

r= z ** 2 + 1x= r *np.sin(theta)

y= r *np.cos(theta)

ax.plot(x, y, z, label='curve',color = 'g')

ax.legend()

plt.show()

996313-20200622184317847-1744376165.png

再看三维散点图:

from mpl_toolkits.mplot3d importAxes3Dimportmatplotlib.pyplot as pltimportnumpy as np

from matplotlibimportcm

plt.rcParams['font.family'] = ['Arial Unicode MS'] # 用来正常显示中文标签

plt.rcParams['axes.unicode_minus'] =False # 用来正常显示负号

sns.set_style('whitegrid', {'font.sans-serif': ['Arial Unicode MS', 'Arial']})

#用来解决中文方块化的问题

x= np.random.normal(0,2,size = (3,50))

y= np.random.normal(4,2,size = (3,50))

fig= plt.figure(figsize=(10,5))

ax1= fig.add_subplot(121, projection='3d')

ax1.scatter(x[0],x[1],x[2],color = 'r',marker = 'o',label = '红点')

ax1.scatter(y[0],y[1],y[2],color = 'b',marker = '^',label = '蓝点')

ax1.legend()

ax1.set_xlabel('X')

ax1.set_ylabel('Y')

ax1.set_zlabel('Z')

ax2= fig.add_subplot(122,projection='3d')

ax2.scatter(x[0],x[1],x[2],color = 'r',marker = 'o',label = '红点')

ax2.scatter(y[0],y[1],y[2],color = 'b',marker = '^',label = '蓝点')

x1= np.linspace(-5,5,100)

y1= np.linspace(-3,8,100)

x1,y1=np.meshgrid(x1,y1)

z1= 6*np.ones(shape = (100,100)) - x1 -y1

ax2.plot_surface(x1,y1,z1,cmap=cm.coolwarm,

rstride=1, # rstride(row)指定行的跨度

cstride=1, # 列跨度

linewidth= 0, #线宽最低

antialiased=True) #抗锯齿打开

ax2.legend()

ax2.set_xlabel('X')

ax2.set_ylabel('Y')

ax2.set_zlabel('Z')

plt.show()

996313-20200622210644297-1911478364.png

可以看出x + y + z = 6的平面刚好能够把红点和蓝点区分开。

因为红点呈中心为原点的正态分布,蓝点呈中心为(4,4,4)的正态分布,

x+y+z = 6刚好是过两个中心中点的垂直平面,可以将两个正态分布的散点区分开。

接下来我们要绘制x^2 - y^2 = z的图像 (马鞍面)

三维曲面图:

from mpl_toolkits.mplot3d importAxes3Dimportmatplotlib.pyplot as pltimportnumpy as np

from matplotlibimportcm

from matplotlib.tickerimportLinearLocator, FormatStrFormatter

plt.rcParams['font.family'] = ['Arial Unicode MS'] # 用来正常显示中文标签

plt.rcParams['axes.unicode_minus'] =False # 用来正常显示负号

sns.set_style('whitegrid', {'font.sans-serif': ['Arial Unicode MS', 'Arial']})

#用来解决中文方块化的问题

x= np.linspace(-5,5,100)

y= np.linspace(-5,5,100)

x,y=np.meshgrid(x,y)

z= x**2-y**2f= plt.figure(figsize=(5,4))

ax= f.add_subplot(111,projection = '3d')

ax.plot_surface(x, y, z, cmap=plt.get_cmap('rainbow'), rstride = 4,cstride = 4,

linewidth=0, antialiased=False)

ax.set_zlim(-20, 20)

ax.zaxis.set_major_locator(LinearLocator(11)) #z方向上均匀分成11-1=10份,即找11个分点,

ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f')) #分节点的值保留两位小数

plt.show()

996313-20200622212839936-395730192.png

可以看出来当行跨度、列跨度为4的时候,划分曲线显得十分明显,使得整个曲面呈网格状。

另外我们能在plt.show()前面加上f.colorbar(surf, shrink=.5, aspect=5) #shrink越小,表示colorbar越小

便可以在右边绘制一个colorbar:

996313-20200622214011051-1444538412.png

我们从图中也可以看出相近的颜色的点高度都是相同的,我们能否直接绘制等高线呢?

当然可以!

from mpl_toolkits.mplot3d importaxes3dimportmatplotlib.pyplot as plt

from matplotlibimportcm

from matplotlib.tickerimportLinearLocator, FormatStrFormatter

plt.rcParams['font.family'] = ['Arial Unicode MS'] # 用来正常显示中文标签

plt.rcParams['axes.unicode_minus'] =False # 用来正常显示负号

sns.set_style('whitegrid', {'font.sans-serif': ['Arial Unicode MS', 'Arial']})

#用来解决中文方块化的问题

x= np.linspace(-5,5,100)

y= np.linspace(-5,5,100)

x,y=np.meshgrid(x,y)

z= x**2-y**2f= plt.figure(figsize=(5,4))

ax= f.add_subplot(111,projection = '3d')

surf= ax.plot_surface(x, y, z, cmap=cm.coolwarm, rstride = 4,cstride = 4,

linewidth=0, antialiased=False)

cset= ax.contour(x, y, z, zdir = 'z',offset = 30, cmap=cm.coolwarm, antialiased=False)

ax.set_zlim(-20, 20)

ax.zaxis.set_major_locator(LinearLocator(11)) #z方向上均匀分成11-1=10份,即找11个分点,

ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f')) #分节点的值保留两位小数

ax.set_xlabel('X')

ax.set_ylabel('Y')

ax.set_zlabel('Z')

f.colorbar(surf, shrink=.5,aspect = 5)

plt.show()

996313-20200622215559030-1558805929.png

叠加柱状图(用处较大):

importnumpy as npimportmatplotlib.pyplot as plt

plt.rcParams['font.family'] = ['Arial Unicode MS'] # 用来正常显示中文标签

plt.rcParams['axes.unicode_minus'] =False # 用来正常显示负号

sns.set_style('ticks', {'font.sans-serif': ['Arial Unicode MS', 'Arial']}) #用来解决中文方块化的问题

N= 13#含有13组数据 每一组又分为三类A B C,每一类的频数记录其中

A= (52, 49, 48, 47, 44, 43, 41, 41, 40, 38, 36, 31, 29)

B= (38, 40, 45, 42, 48, 51, 53, 54, 57, 59, 57, 64, 62)

d=[]for i in range(0, len(A)):

sum= A[i] +B[i]

d.append(sum)

C= (10, 11, 7, 11, 8, 6, 6, 5, 3, 3, 7, 5, 9)

ind=np.arange(N) #ind表示横轴坐标

width= 0.4 #条形宽度设为0.4p1= plt.bar(ind, A, width, color = '#636e72')

p2= plt.bar(ind, B, width, bottom=A, color = '#0984e3')

p3= plt.bar(ind, C, width, bottom=d, color = '#fdcb6e') #最上面一层应该是前面那个相加得到的d作为下限

plt.ylabel('频数')

plt.title('不同组别各类数目分布')

plt.xticks(ind, ('G1', 'G2', 'G3', 'G4', 'G5', 'G6', 'G7', 'G8', 'G9', 'G10', 'G11', 'G12', 'G13'))

plt.yticks(np.arange(0, 81, 20))

plt.legend((p1[0], p2[0], p3[0]), ('A', 'B', 'C'), loc = 'upper right', bbox_to_anchor = (1.13,1.02)) #用两个元组表示legend标签,p[0]表示该图所拥有的颜色

plt.show()

996313-20200622223238249-609951388.png

可以看出B类别在每个组都比较多,而A类别在每个组都比较少。

综上就是Python绘图主要用的一些函数及其实例,后面会更新一些有关机器学习算法的总结,大家一起学习,一起进步~

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
©️2021 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值