如何使用seaborn绘制散点图

背景

        最近在做一些文本聚类的工作,在看数据的可视化分布的时候,采用了seaborn来绘制散点图。因此想着写一篇关于seaborn绘制散点图的博客。

前期准备

        首先,检查下你的python是否有 matplotlib 还有seaborn库。同时,由于seaborn常用pandas 的数据格式作为data输入,所以也要检查下pandas。

pip list | grep matplotlib
pip list | grep seaborn
pip list | grep pandas

        如果没有对应的库的话:

pip install matplotlib    
pip install seaborn
pip install pandas

参数使用

        接下来,我们主要是采用seaborn来绘制它的散点图,可以看下seaborn绘制散点图的官方文档。seaborn的绘制散点图的官方api文档如下所示。

seaborn.scatterplot — seaborn 0.13.0 documentation

        因为是绘制二维的散点图,我们主要用的相关的参数有:data、x、y、hue。

        data:data的输入可以为pandas的DataFrame结构,可以为numpy的array,也可以是对应的mapping,或者是序列输入数据结构。或者甚至能是可以在内部能够命名能够做修改的向量或者数据集。在本例的应用当中,我们使用的是pandas的数据结构。

        x, y:是对应的数据的x轴和y轴

        hue:数据的标签。

        本次使用pandas的DataFrame作为数据的输入,数据示例如下图所示:

代码示例

# -*- coding: utf-8 -*-

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('white')         # 设置为白色背景

csv_path = "/Users/Desktop/seaborn_test.csv"
file = pd.read_csv(csv_path)   # 把csv转为pandas的DataFrame
ax = sns.scatterplot(x="x", y="y", hue="label", data=file)

plt.legend(loc='best')         # 添加图例
plt.title("seaborn test")      # 设置图片名称
plt.show()                     # 显示图片

        结果如下图所示:

        散点图绘制完成。

参考资料

1.seaborn.scatterplot — seaborn 0.13.0 documentation

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值