kl变换与小波变换区别与联系_小波变换与傅里叶变换的对比、异同

小波变换与傅里叶变换的对比、异同

一、基的概念

两者都是基,信号都可以分成无穷多个他们的和(叠加)。而展开系数就是基与信号之间的内积,更通俗的说是投影。展开

系数大的,说明信号和基是足够相似的。这也就是相似性检测的思想。但我们必须明确的是,傅里叶是

0-2pi

标准正交基,而小波

-inf

inf

之间的基。因此,小波在实轴上是紧的。而傅里叶的基(正弦或余弦),与此相反。而小波能不能成为

Reisz

基,

或标准稳定的正交基,还有其它的限制条件。此外,两者相似的还有就是

PARSEVAL

定理。(时频能量守恒)。

二、离散化的处理

傅里叶变换,是一种数学的精妙描述。但计算机实现,却是一步步把时域和频域离散化而来的。第一步,时域离散化,我们

得到离散时间傅里叶变换(

DTFT

),频谱被周期化;第二步,再将频域离散化,我们得到离散周期傅里叶级数(

DFS

),时域进一

步被周期化。第三步,考虑到周期离散化的时域和频域,我们只取一个周期研究,也就是众所周知的离散傅里叶变换(

DFT

)。这

里说一句,

DFT

是没有物理意义的,

它只是我们研究的需要。

借此,

计算机的处理才成为可能。

所有满足容许性条件

(从

-INF

+INF

积分为零)的函数,都可以成为小波。小波作为尺度膨胀和空间移位的一组函数也就诞生了。但连续取值的尺度因子和平移因子,

在时域计算量和频域的混叠来说,都是极为不便的。用更为专业的俗语,叫再生核。也就是,对于任何一个尺度

a

和平移因子

b

小波,和原信号内积,所得到的小波系数,都可以表示成,在

a

b

附近生成的小波,投影后小波系数的线性组合。这就叫冗余性。

这时的连续小波是与正交基毫无关系的东西,它顶多也只能作为一种积分变换或基。但它的显微镜特点和相似性检测能力,已经显

现出来了。为了进一步更好的将连续小波变换离散化,以下步骤是一种有效方法。第一步,尺度离散化。一般只将

a

二进离散化,

此时

b

是任意的。这样小波被称为二进小波。第二步,离散

b

。怎么离散化呢?

b

取多少才合适呢?于是,叫小波采样定理的东西,

就这样诞生了。也就是小波平移的最小距离(采样间隔),应该大于二倍小波基的最高频率(好像类似,记不清了)。所以

b

取尺

度的整数倍就行了。也就是越胖的小波,对应频谱越窄,平移量应该越大,采样间隔越大。当然,第一二两步的频域理解,即在满

足频域窗口中心是

3

倍的频域窗口半径的前提下,频域就在统计上是完美二分的。

(但很多小波满足不了这个条件,而且频域窗口

能量不

?,

所以只是近似二分的

).

这时的小波变换

,

称为离散二进小波变换

.

第三步

,

引入稳定性条件

.

也就是经过变换后信号能量

和原信号能量有什么不等式关系

.

满足稳定性条件

?

,

就是一个小波框架产生了可能

.

他是数值稳定性的保证

.

一个稍弱的稳定

条件

???,

就是

?

并且小波函数线性无关

,

此时小波基称为

Reisz

.

并且,如果变换后能量守恒,

(A=B=1)

,并且线性无

关,这就是标准离散正交小波基。这种分解也就是大家熟知的直和分解。若

A

B

不相等,且相差很大,我们就说小波不是紧框架

的,所以双正交,对偶小波也就自然而然引进来了。若

A

B

不相等,但又相差不大,这时稳定重构也是可能的,这时成为几乎紧

框架的。

(好像说这样小波有橹棒性特点,也就是粗略分解,但却精确重构。)经过

3

步,我们最终地得到了一个二进离散化稳定

的小波变换,这正是我们要的结果。

三、快速算法。

如果说现代数字信号处理革命的算法,甚至是很多快速算法的老始祖,或者是满矩阵向量乘法一个几乎不可抗拒的最小计算

NlogN

,那就是令我不得不佩服的快速傅里叶变换(

FFT

)。这里我不想解释过多的基

2

算法,和所谓的三重循环,还有那经典

的蝶形单元,

或是分裂基之类,

我想说的就是一种时频对应关系。

也就是算法的来源。

我们首先明确,

时域的卷积对应频域的相乘,

因此我们为了实现卷积,可以先做傅里叶变换,接着在频域相乘,最后再做反傅里叶变换。这里要注意,实际我们在玩

DSP

。因此,

大家要记住,圆周卷积和离散傅里叶变换,是一家子。快速傅里叶是离散傅里叶的快速算法。因此,我们实现离散线性卷积,先要

补零。然后使得它和圆周卷积相等。然后就是快速傅里叶变换,频域相乘,最后反快速傅里叶变换。当然,如果我们就需要的是圆

周卷积,那我们也就不需要多此一举的补零。这里,我们可以把圆周卷积,写成矩阵形式。这点很重要。

Y=AX

。这里的

A

是循环矩

阵。但不幸的是

A

仍然是满阵。小波的快速算法。

MALLAT

算法,是一个令人振奋的东西。它实质给了多分辨率分析(多尺

度分析)一个变得一发而不可收的理由。它实质上,讲了这样一个意思。也就是。我在一个较高的尺度(细节)上作离散二进稳定

的小波变换,得到了一个结果(小波系数),我若是想得到比它尺度低的小波系数(概貌),我不用再计算内积,只是把较高尺度

的小波系数和低通或高通滤波器卷积再抽取即可。但是,所有这些证明的推导是在整个实轴上进行的。即把信号看成无限长的。但

这仍不是我们想要的。还有,我们还必须在较高尺度上作一次内积,才可以使用此算法。因此,我们开始简化,并扩展此理论。第

一,我们把信号的采样,作为一个较高层的小波系数近似初始值。(这是可以的,因为小波很瘦时,和取样函数无异)。第二,我

们把原来的卷积,换为圆周卷积。这和

DSP

何尝不一样呢?它的物理意义,就是把信号作周期延拖(边界处理的一种),使之在整

个实轴上扩展。这种算法令我为之一贯坚持的是,它是完全正交的,也就是说是正交变换。正变换

Y=AX

;反变换

X=A

Y

;一般对

于标准正交基,

A

’是

A

的共轭转置,对于双正交

A

’是

A

的对偶矩阵。但不管如何,我们可以大胆的写,

AA

=A

A=I

。这里

I

单位矩阵。

那怎样操作才是最快的呢?我们来分析

A

的特点,首先

A

是正交阵,其次

A

是有循环矩阵特点,但此时

A

上半部分是由低通滤波器

构成的循环子矩阵,下半部分是由高通滤波器构成的子矩阵,但却是以因子

2

为循环的。为什么,因为你做了

2

抽取。所以我们可

以,实现小波变换用快速傅里叶变换。这时如果

A

是满阵的,则复杂度由

O(N.^2

)下降到

O(NlogN)

。但还有一点,我们忘了

A

稀疏的,因为信号是很长的,而滤波器确实很短的,也就是这个矩阵是个近似对角阵。所以,快速傅里叶是不快的,除非你傻到含

有零的元素,也作了乘法。因此,小波变换是

O(N)

复杂度的。这是它的优势。但要实现,却不是那么容易,第一个方法,稀疏矩

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值