基于python的贝叶斯分类算法_Python实现贝叶斯分类器

患者的年纪,怀孕和血液检查的次数。所有患者都是

21

岁以上(含

21

岁)的女性,所有属

性都是数值型,而且属性的单位各不相同。

每一个记录归属于一个类,

这个类指明以测量时间为止,

患者是否是在

5

年之内感染的糖尿

病。如果是,则为

1

,否则为

0

机器学习文献中已经多次研究了这个标准数据集,好的预测精度为

70%-76%

下面是

pima-indians.data.csv

文件中的一个样本,了解一下我们将要使用的数据。

注意:

下载

文件

,然后以

.csv

扩展名保存(如:

pima-indians-diabetes.data.csv

)。查看

文件

中所有属性的描述。

Python

1

2

3

4

5

6,148,72,35,0,33.6,0.627,50,1

1,85,66,29,0,26.6,0.351,31,0

8,183,64,0,0,23.3,0.672,32,1

1,89,66,23,94,28.1,0.167,21,0

0,137,40,35,168,43.1,2.288,33,1

朴素贝叶斯算法教程

教程分为如下几步:

1.

处理数据:

CSV

文件中载入数据,然后划分为训练集和测试集。

2.

提取数据特征:

提取训练数据集的属性特征,以便我们计算概率并做出预测。

3.

单一预测:

使用数据集的特征生成单个预测。

4.

多重预测:

基于给定测试数据集和一个已提取特征的训练数据集生成预测。

5.

评估精度:

评估对于测试数据集的预测精度作为预测正确率。

6.

合并代码:

使用所有代码呈现一个完整的、独立的朴素贝叶斯算法的实现。

1.

处理数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值