来源:多体动力学与控制
作者:王杨
多体系统动力学的根本目的是应用计算机技术进行复杂机械系统的动力学分析与仿真。它是在经典力学基础上的新学科分支,在经典刚体系统动力学基础上,经历了多刚体系统动力学和计算多体系统动力学两个发展阶段,目前已趋于成熟。多体系统中最简单情况(自由质点)和一般简单情况(少数几个刚体),是经典力学的研究内容。多刚体系统动力学就是为多个刚体组成的复杂系统的运动学和动力学分析建立适宜于计算机程序求解的数学模型,并寻求高效、稳定的数值求解方法。
1687年,牛顿在《自然哲学的数学原理》中提出力是物体运动的原因,牛顿建立的牛顿方程解决了质点的运动学和动力学问题。1775年,欧拉提出刚体的概念,他采用反作用概念隔离刚体以描述铰链等约束,建立了经典力学中的牛顿—欧拉方程。1743年,达朗伯研究了约束刚体系统,区分了作用力和反作用力,达朗伯将约束反力称为损失力,形成了虚功原理初步概念。
1788年,拉格朗日在《分析力学》中提出力和约束是影响物体运动的因素。系统研究了约束机械系统,系统地考虑了约束,并提出广义坐标概念,利用变分原理考虑系统的动能和势能,得出第二类拉格朗日方程——最少数量坐标的二阶常微分方程(ODE),并利用约束方程与牛顿定律得出带有拉格朗日乘子的第一类拉格朗日方程——最大数量坐标的微分代数方程(DAE)。
1834年,哈密顿在《论动力学中的一个普遍方法》中提出力学原理可以按某种作用量的逗留值来叙述。1894年赫兹提出非完整约束概念,认为约束是影响物体运动的因素。
1908年若丹(Jourdain)给出了若丹原理——虚功率形式的动力学普遍方程,利用若丹原理可以方便地讨论碰撞问