matlab画出鸢尾花数据集散点图尾花,鸢尾花数据集分以及绘制散点矩阵图

本文使用Python的matplotlib库和sklearn的鸢尾花数据集,展示了如何绘制散点矩阵图。首先加载鸢尾花数据集,然后进行数据集拆分,并通过pandas将数据转换为DataFrame以便于绘图。最后,使用scatter_matrix函数创建了一个15x15的散点矩阵,颜色根据鸢尾花类别标记,帮助观察不同特征之间的关系。
摘要由CSDN通过智能技术生成

#查看sklearn中数据集,波士顿房价数据集

# from sklearn.datasets import load_boston

# boston = load_boston()

# print(boston)

#####步骤一 查看数据集

from matplotlib import axes

from sklearn.datasets import load_iris

iris_dataset = load_iris()

# print(iris_dataset)

print("数据集的keys:\n",iris_dataset.keys())

# dict_keys(['data', 'target', 'target_names', 'DESCR', 'feature_names', 'filename'])

print("数组元素的值:",iris_dataset.target)

print("数组长度/样本数:",len(iris_dataset.target))

# target是一个数组,存储了data数据中每条记录属于哪一类鸢尾花,所以数组长度150。

# 数组元素的值共有3个(0,1,2),所以共有三种鸢尾花。(标记名)种类为山鸢尾,杂色鸢尾,维吉尼亚鸢尾。

print("每个样本特征:",iris_dataset.data.shape) #每个样本特征: (150, 4)

# data 中共150条数据,采集了每个样本的4个特征

pr

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值