python输出方格_Python蓝桥杯练习 剪格子

该博客讨论了一种算法问题,即检查一个给定的m×n矩阵中的数字是否能被分割成两个区域,使得两部分的数字和相等。问题通过深度优先搜索(DFS)来解决,从左上角开始,逐步遍历并剪枝。当找到满足条件的分割时,记录包含最少格子数的解。示例输入和输出展示了算法的运行情况。
摘要由CSDN通过智能技术生成

问题描述

如下图所示,3 x 3 的格子中填写了一些整数。

+----+--+

|10 1|52|

+--***--+

|20|30 1|

*******--+

| 1| 2| 3|

+--+--+--+

我们沿着图中的星号线剪开,得到两个部分,每个部分的数字和都是60。

本题的要求就是请你编程判定:对给定的m x n 的格子中的整数,是否可以分割为两个部分,使得这两个区域的数字和相等。

如果存在多种解答,请输出包含左上角格子的那个区域包含的格子的最小数目。

如果无法分割,则输出 0。

输入格式

程序先读入两个整数 m n 用空格分割 (m,n<10)。

表示表格的宽度和高度。

接下来是n行,每行m个正整数,用空格分开。每个整数不大于10000。

输出格式

输出一个整数,表示在所有解中,包含左上角的分割区可能包含的最小的格子数目。

样例输入1

3 3

10 1 52

20 30 1

1 2 3

样例输出1

3

样例输入2

4 3

1 1 1 1

1 30 80 2

1 1 1 100

样例输出2

10

思路

先计算所有格子之和,除以2就是limit值,遍历的时候大于limit就不用继续遍历下去了,需要回溯;等于的时候记录此时遍历的格子数量,如果小于记录的最小count,那么更新;如果小于limit,那么继续遍历。

从最左上角的格子开始,进行深度优先遍历(dfs),利用递归可以很容易的做到

由于格子是3*3的,9个格子的话,全排列一下感觉数量级也不是很大,而且很多可以剪枝(要保证连通),没有尝试,感觉是可行的。

Python dfs源代码

# 输入格式

# 程序先读入两个整数 m n 用空格分割 (m,n<10)。

# 表示表格的宽度和高度。

# 接下来是n行,每行m个正整数,用空格分开。每个整数不大于10000。

m,n=map(int,input().split())

lst=[]

for i in range(n):

lst.append(list(map(int,input().split())))

visited=[[0 for i in range(m)]for j in range(n)]

all_sum=0

for i in range(n):

all_sum+=sum(lst[i])

limit=int(all_sum/2)

move=[[0,-1],[1,0],[0,1],[-1,0]]

def judge_border(lst,x,y):

if(x<0 or x>=len(lst)):

return False

if(y<0 or y>=len(lst[0])):

return False

return True

left=0

count=0

min_count=0

def dfs(lst,x,y,visited):

global move

global left

global limit

global count

global min_count

left+=lst[x][y]

visited[x][y]=1

count+=1

if(left

for i in range(4):

if(judge_border(lst,x+move[i][0],y+move[i][1])):

if(visited[x+move[i][0]][y+move[i][1]]==0):

dfs(lst,x+move[i][0],y+move[i][1],visited)

if(left==limit):

if(min_count==0 or count

min_count=count

visited[x][y]=0

count-=1

left-=lst[x][y]

dfs(lst,0,0,visited)

print(min_count)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值