google bigtable论文原文_Google新作Synthesizer:我们还不够了解自注意力

838e7ae8c15978cb9857a75edfde5857.png

作者 | @苏剑林

单位 | 追一科技

研究方向 | NLP、神经网络

写在开头

深度学习这个箱子,远比我们想象的要黑。

据说物理学家费曼说过一句话[来源]:“谁要是说他懂得量子力学,那他就是真的不懂量子力学。”我现在越来越觉得,这句话中的“量子力学”也可以替换为“深度学习”。尽管深度学习已经在越来越多的领域证明了其有效性,但我们对它的解释性依然相当无力。当然,这几年来已经有不少工作致力于打开深度学习这个黑箱,但是很无奈,这些工作基本都是“马后炮”式的,也就是在已有的实验结果基础上提出一些勉强能说服自己的解释,无法做到自上而下的构建和理解模型的原理,更不用说提出一些前瞻性的预测。

本文关注的是自注意力机制。直观上来看,自注意力机制算是解释性比较强的模型之一了,它通过自己与自己的Attention来自动捕捉了token与token之间的关联,事实上在 Attention is All You Need 那篇论文中,就给出了如下的看上去挺合理的可视化效果:

f25cb2a17c0ccfa561b913bb48f19852.png
《Attention is All You Need》一文中对Attention的可视化例子

但自注意力机制真的是这样生效的吗?这种“token对token”的注意力是必须的吗?前不久Google的新论文Synthesizer: Rethinking Self-Attention in Transformer Models 对自注意力机制做了一些“异想天开”的探索,里边的结果也许会颠覆我们对自注意力的认知。

论文标题:Synthesizer: Rethinking Self-Attention in Transformer Models

论文链接:https://arxiv.org/abs/2005.00743

自注意力

自注意力模型的流行,始于2017年Google发表的 Attention is All You Need 一文,关于它的科普读者还可以参考笔者旧作《Attention is All You Need》浅读(简介+代码)。它的基础是Scaled-Dot Attention,定义如下:

其中

,softmax则是在m的那一维进行归一化。而自注意力,则是对于同一个
,通过不同的投影矩阵
得到
,然后再做Attention,即:

至于Multi-Head Attention,则不过是Attention运算在不同的参数下重复多次然后将多个输出拼接起来,属于比较朴素的增强。而关于它的进一步推广,则可以参考《突破瓶颈,打造更强大的Transformer》

天马行空

本质上来看,自注意力就是通过一个

的矩阵
的矩阵
,将原本是
的矩阵
,变成了
的矩阵
。其中矩阵
是动态生成的,即:

对于矩阵

,本质上来说它就是
里边两两向量的内积组合,所以我们称它为“token对token”的Attention。

9d186a1aee97575219d48b6021bd7464.png
Synthesizer自注意力与标准自注意力的对比

那么,就到了前面提出的问题:“token对token”是必须的吗?能不能通过其他方式来生成这个矩阵

?Google的这篇论文正是“天马行空”了几种新的形式并做了实验,这些形式统称为Synthesizer。

Dense形式

第一种形式在原论文中称为Dense:

需要是
大小的,而
的,所以只需要一个
的变换矩阵
就可以将它变成
了,即:

这其实就相当于把

固定为常数矩阵
了。当然,原论文还做得更复杂一些,用到了两层Dense层:

但思想上并没有什么变化。

Random形式

刚才说Dense形式相当于把

固定为常数矩阵,我们还能不能更“异想天开”一些:把
固定为常数矩阵?这时候整个
相当于是一个常数矩阵,即:

原论文中还真是实验了这种形式,称之为Random,顾名思义,就是

是随机初始化的,然后可以选择随训练更新或不更新。据原论文描述,固定形式的Attention首次出现在论文
Fixed Encoder Self-Attention Patterns in Transformer-Based Machine Translation ,不同点是那里的Attention矩阵是由一个函数算出来的,而Google这篇论文则是完全随机初始化的。从形式上看,Random实际上就相当于可分离卷积(Depthwise Separable Convolution)运算。

低秩分解

上面两种新形式,往往会面对着参数过多的问题,所以很自然地就想到通过低秩分解来降低参数量。对于Dense和Random,原论文也提出并验证了对应的低秩分解形式,分别称为Factorized Dense和Factorized Random。

Factorized Dense通过Dense的方式,生成两个

的矩阵
,其中ab=n;然后将
重复b次、然后将
重复a次,得到对应的
矩阵
,最后将他们逐位相乘(个人感觉相乘之前
应该要转置一下比较合理,但原论文并没有提及),合成一个
的矩阵:

至于Factorized Random就很好理解了,本来是一整个

的矩阵
,现在变成两个
的矩阵
,然后:

混合模式

到目前为止,连同标准的自注意力,我们有5种不同的生成矩阵

的方案,它们也可以混合起来,即:

其中

是不同形式的自注意力矩阵,而
是可学习参数。

结果分析

前面介绍了统称为Synthesizer的几种新型自注意力形式,它们的共同特点是没有保持“token对token”形式,尤其是Random,则完全抛弃了原有注意力的动态特点,变成了静态的矩阵。

那么,这些新型自注意力的效果如何呢?它们又怎样冲击我们对自注意力机制的认识呢?

机器翻译

第一个评测任务是机器翻译,详细地比较了各种自注意力形式的效果:

3a61638a4e9f067577be11b14a5d441d.png
Synthesizer在机器翻译任务上的表现对比

不知道读者怎么想,反正Synthesizer的这些结果是冲击了笔者对自注意力的认知的。表格显示,除了固定的Random外,所有的自注意力形式表现基本上都差不多,而且就算是固定的Random也有看得过去的效果,这表明我们以往对自注意力的认知和解释都太过片面了,并没有揭示自注意力生效的真正原因。

摘要对话

接下来在摘要和对话生成任务上的结果:

f958b2d934266f20be2c59553c53d54c.png
Synthesizer在摘要和对话任务上的表现对比

在自动摘要这个任务上,标准注意力效果比较好,但是对话生成这个任务上,结果则反过来:标准的自注意力是最差的,Dense(D)和Random(R)是最好的,而当Dense和Random混合了标准的自注意力后(即 D+V 和 R+V),效果也变差了。这说明标准注意力并没有什么“独占鳌头”的优势,而几个Synthesizer看起来是标准注意力的“退化”,但事实上它们互不从属,各有优势。

预训练+微调

最后,对于我们这些普通读者来说,可能比较关心是“预训练+微调”的效果怎样,也就是说,将BERT之类的模型的自注意力替换之后表现如何?原论文确实也做了这个实验,不过Baseline不是BERT而是T5,结果如下:

77360b31c746ab10320fc72919079fe1.png
Synthesizer在“预训练+微调”的表现对比

在这个结果中,相比标准自注意力,Dense和Random就显得逊色了,这表明Dense和Random也许会在单一任务上表现得比较好,而迁移能力则比较弱。但是不能否定的是,像Random这样的自注意力,由于直接省去了

这个矩阵运算,因此计算效率会有明显提升,因此如果能想法子解决这个迁移性问题,说不准Transformer模型家族将会迎来大换血。

文末小结

本文介绍了Google的新工作Synthesizer,它是对目前流行的自注意力机制的反思和探索。论文中提出了几种新型的自注意力机制,并做了相当充分的实验,而实验结果很可能会冲击我们对自注意力机制的已有认知,值得大家读读。

#投 稿 通 道#

如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢? 答案就是:你不认识的人。

总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。

PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学习心得技术干货。我们的目的只有一个,让知识真正流动起来。

来稿标准:

• 稿件确系个人原创作品,来稿需注明作者个人信息(姓名+学校/工作单位+学历/职位+研究方向)

• 如果文章并非首发,请在投稿时提醒并附上所有已发布链接

• PaperWeekly 默认每篇文章都是首发,均会添加“原创”标志

投稿方式:

• 方法一:在PaperWeekly知乎专栏页面点击“投稿”,即可递交文章

• 方法二:发送邮件至:hr@paperweekly.site ,所有文章配图,请单独在附件中发送

• 请留下即时联系方式(微信或手机),以便我们在编辑发布时和作者沟通

关于PaperWeekly

PaperWeekly 是一个推荐、解读、讨论、报道人工智能前沿论文成果的学术平台。如果你研究或从事 AI 领域,欢迎在公众号后台点击「交流群」,小助手将把你带入 PaperWeekly 的交流群里。

加入社区:http://paperweek.ly

微信公众号:PaperWeekly

新浪微博:@PaperWeekly

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值